CARAT KOP: Towards Protecting the Core HPC Kernel
from Linux Kernel Modules

Thomas Filipiuk Nick Wanninger Nadharm Dhiantravan
Northwestern University Northwestern University Northwestern University
United States United States United States

tfilipiuk@u.northwestern.edu

ncw@u.northwestern.edu

nadharm@u.northwestern.edu

Carson H Surmeier Alex Bernat Peter Dinda
Northwestern University Harvard University Northwestern University
United States United States United States
chs@u.northwestern.edu alexbernat@college.harvard.edu pdinda@northwestern.edu
ABSTRACT kernel module from the kernel tree (a network device dri-

Extending Linux through the kernel module interface can
offer immense benefits and capabilities in high performance
computing (HPC). These extensions can also be more readily
deployed because Linux is the common, typically only, sup-
ported OS choice among supercomputing vendors. However,
because Linux is monolithic, Linux kernel modules are free to
read and write any address with kernel-level permissions. A
poorly written—or untrustworthy—module can wreak havoc
on the whole system. This unfortunately means that many
production HPC systems often do not permit custom kernel
modules to be inserted into the system, no matter the benefit.

By limiting what objects in the physical address space the
module can have access to, it may be possible to guarantee
memory safety for these modules. In this paper, we discuss
the possibility of using the previously developed compiler-
and runtime-based address translation (CARAT) model and
toolchain to inject guards around a kernel module’s memory
accesses. The memory accesses would then be allowed or dis-
allowed according to a memory access policy specified by the
user, in what amount to firewall rules. We share our results
regarding the guard injection and address validation pro-
cess. The CARAT-based Kernel Object Protection (CARAT
KOP) prototype is able to transform a substantial production

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ROSS ’23, November 12, 2023, Denver, CO

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/3624062.3624237

ver composed of approximately 19,000 lines of code). The
transformed module can then run with minimal effect on
performance while restricted to a set of address regions.

CCS CONCEPTS

« Software and its engineering — Operating systems,
compilers; Runtime environments; « Security and pri-
vacy — Systems security; « Blended systems;

KEYWORDS
protection, kernel module, kernel, Linux

ACM Reference Format:

Thomas Filipiuk, Nick Wanninger, Nadharm Dhiantravan, Carson
H Surmeier, Alex Bernat, and Peter Dinda. 2023. CARAT KOP: To-
wards Protecting the Core HPC Kernel from Linux Kernel Modules.
In Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis (SC-W 2023), November
12-17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/lO.l145/3624062.3624237

1 INTRODUCTION

High performance computing environments can benefit from
the performance or capabilities afforded by specialized kernel
support. Although custom kernels [9, 14, 16, 18, 28, 31], per-
haps combined with hardware partitioning support [13, 27],
are a powerful way to do this, in many cases it is possible to
add the capability as kernel module for Linux [11, 17]. We
have ourselves developed Linux kernel modules for fast high-
performance floating point trap delivery as part of FPVM [6],
and fast timer delivery for heartbeat scheduling [29].
Beyond being able to leverage Linux to avoid the major
engineering involved with specialized kernels, the Linux
kernel module route also bodes well for deployment. It has
proven difficult to get supercomputing vendors to supply,
and thus make easier to deploy, custom kernels. It is much
more straightforward for them to deliver what are ultimately

https://doi.org/10.1145/3624062.3624237
https://doi.org/10.1145/3624062.3624237

ROSS 23, November 12, 2023, Denver, CO

variants of Linux. Deploying Linux kernel modules on top of
these is a much smaller ask. Indeed, the vendor might even
supply the kernel build framework, much like in commodity
Linux, and thus allow the construction of custom modules
with the choice of inserting the modules being that of the
supercomputer’s operators.

Why might a supercomputer operator be wary of deploy-
ing custom Linux kernel modules? Because they are inher-
ently dangerous. The Linux kernel is monolithic, and conse-
quently kernel module code operates with no real restrictions.
The boundary between the core kernel and the module is
essentially nonexistent. While there are several ways [12, 32]
in which a module could subvert the kernel (or simply have
a bug that causes a problem), in this work we focus on one:
memory access.!

A kernel module can generally access any part of mem-
ory, including regions critical to the operating system. This
means that an action as simple as installing a custom device
driver module can come with very high risks if not done
securely. The consequences of installing buggy or malicious
modules into the kernel can range from corruption of data
to full-fledged rootkit-style attacks. Thus, Linux users need
to take care to only insert module code from trusted vendors
or otherwise verify the security of modules before installing
them. This makes difficult the goal of being able to incorpo-
rate custom modules to benefit HPC.

One way to potentially mitigate the security threat of
kernel modules would be to limit the addresses they may
use without revoking their kernel-level privileges. This is
our focus here. We present evidence that this is feasible
with compiler transformation combined with special runtime
support implemented as a kernel module. The core kernel is
left untouched, while the kernel module must be recompiled
but requires absolutely no source changes.

Our prototype CARAT KOP (CARAT-based Kernel Object
Protection) system leverages technology developed for the
compiler- and runtime-based address translation (CARAT [33,
34]) project. CARAT and CARAT CAKE seek to replace the
hardware/kernel co-design of traditional paging-based vir-
tual memory, with a compiler/kernel co-design that avoids
paging. CARAT KOP uses a variant of the guarding process
from CARAT, as applied to Linux kernel modules, and op-
erationalized within the Linux kernel. Essentially, we inject
callbacks to a guard function into the kernel module code
using a clang compiler (version 14.0.0) pass. This guarding
process is certified by the compiler, and can be validated by
the kernel when the transformed module is inserted. Then,

1By memory access, we mean access to the physical address space, and
RAM, MMIO devices, etc, that are mapped into it. Note that on Linux,
virtual memory is always in effect in the core kernel, but the physical
address space is remapped in the kernel to be accessible at a known offset
in the virtual address space.

Filipiuk, Wanninger, Dhiantravan, Surmeier, Bernat, Dinda

during the runtime of the module, the guard function checks
memory accesses against a policy provided by the user. If
the permissions required of the access and the permissions
provided in the policy do not align, the access is disallowed.

CARAT KOP’s guard injection method can be used to
create protective barriers between Linux kernel modules and
the rest of the kernel, using default allow or default deny
policies. This would provide a guarantee of safety (at least
to some degree) when installing custom modules, which
Linux currently lacks. The guarantee would be with respect
to policies set by the operator.

Our contributions are:

e We argue for the need for core kernel protection from
custom kernel modules in order to enable the deploy-
ment of specialized modules in HPC environments.

e We describe the design and implementation of CARAT
KOP, a proof-of-concept system for achieving such
protection through compiler transformation and spe-
cialized runtime support.

e We apply CARAT KOP to a substantial Linux kernel
module, a network driver, to demonstrate its capability.

e We evaluate the performance of the transformed mod-
ule and find it is only minimally effected.

e We lay out the many unresolved questions about the
exact mechanism of the memory guards, the creation
of memory region policies that are both practical and
secure, and trade-offs in terms of performance.

2 CARAT AND CARAT CAKE

We leverage technology developed for the compiler- and
runtime-based address translation, or CARAT project. The
original CARAT paper [33] proposed a software-only alter-
native to the traditional hardware-based virtual memory ab-
straction that uses compiler and operating system co-design
instead of hardware and operating system co-design. In ef-
fect all code in the system is transformed by the compiler
(we use LLVM) to introduce additional code that then inter-
acts with a special runtime component or directly with the
kernel. This combination provides the capabilities of pro-
tection/isolation and memory object movement at arbitrary
granularity without using paging. This is accomplished by
three basic mechanisms: (1) allocation and pointer escape
tracking, (2) pointer patching, and (3) guards. (1) and (2)
are used to support memory object movement and thus are
irrelevant to CARAT KOP.

CARAT CAKE [34], Compiler- And Runtime-based Ad-
dress Translation for CollAborative Kernel Environments,
is an implementation of CARAT that combines a highly op-
timized version of the compiler transformations (based on
NOELLE [20]) and specialized support within the Nautilus

CARAT KOP: Towards Protecting the Core HPC Kernel from Linux Kernel Modules

kernel [14] to safely run Linux user executables within the ker-
nel. The CARAT CAKE mechanisms are leveraged to create
a Linux-compatible process abstraction, and to protect the
kernel from the process and processes from each other, all
without any paging-level protections. Note that this model
has a clear analogy with Linux kernel modules, where the
Linux kernel modules are akin to CARAT CAKE processes. It
is the protection capability of CARAT CAKE, through guards,
(3) from above, that we employ in CARAT KOP.

CARAT CAKE accomplishes memory protection for its
processes through the compiler’s insertion of guards before
each load or store in executables.? Guards are simply call-
backs to a CARAT CAKE runtime function that is privately
exported from the kernel. This function performs a permis-
sions check and prevents unauthorized memory accesses,
squashing them into something similar to a page fault. It is
important to understand that CARAT CAKE guards operate
at arbitrary granularity, meaning that protection is possible
down to individual bytes. CARAT KOP inherits this benefit.

Of course, guards are a very expensive proposition if, in-
deed, we checked each data reference. In fact, in CARAT
CAKE, it is only through extensive compiler analysis that
we are able to generally hoist such guards and amortize
them across many references, even in challenging applica-
tion benchmarks like SPEC, PARSEC, NAS, and others. The
guard function itself is also highly optimized for the common
case, inlined everywhere, and then whole program optimiza-
tion is applied, producing a statically linked executable.

Guards in CARAT KOP can be much simpler. As CARAT
KOP focuses on kernel module protection rather than user
code, we do not expect that the significant compiler analysis
and optimization of guards will be necessary to achieve low
overhead, as kernel modules tend to implement less complex
algorithms. Further, because we are not attempting to replace
paging in CARAT KOP, we can fall back on the Linux kernel’s
use of traditional hardware-based virtual memory for some
enforcement. For example, paging can be used to mark the
kernel module’s code pages as unwritable, thus avoiding the
problem of self-modifying code.

In CARAT CAKE, the compilation processes also performs
cryptographic code signing. This is then used at load time to
prove to the kernel that the proper processing has been per-
formed (e.g., that guards have been injected) and by which
compiler. The signature also is in effect an assertion, by the
compilation process, that the code it compiled does not in-
clude any problematic elements such as inline or separate

2CARAT CAKE provides control flow integrity (e.g., instruction fetch guard-
ing) through a different mechanism that is irrelevant to CARAT KOP, which
does not attempt to guard instruction fetches.

ROSS ’23, November 12, 2023, Denver, CO

assembly. These limitations are discussed further in §5. Un-
defined behavior at the C/C++ level is a non-problem be-
cause all transformations operate at the LLVM middle-end,
at which point any front-end language behavior has been
lowered out, and LLVM IR itself does not include undefined
behavior. CARAT KOP needs a similar code signing and
validation process.

3 CARAT KOP

We now break down the implementation of the various parts
that make up the CARAT KOP system, and how they all fit
together. The system comprises three logical components:
the kernel module which enforces a memory access policy
(§3.1), the protected kernel modules which must abide by said
policy (§3.2), and the compiler which transparently inserts
runtime checks into those modules (§3.3).

3.1 Policy Module

Perhaps the most important component of CARAT KOP is
the policy module. Simply, this module is inserted into the
kernel and provides a single symbol, carat_guard, which
is invoked by modules which have been transformed by
the compiler. This interface is general enough—and simple
enough—that potentially any memory policy system could
be built on top of it. The signature of the guard function is
as follows:

void carat_guard(void* addr,
size_t size,
int access_flags);

Before a memory access performed, this function is invoked
with the address, access size, and a bitmap of flags that indi-
cate the intent of the access (read/write). This information
can be compared against whatever data structure or restric-
tions that the policy module might require.

In this work, we evaluate against a relatively simple policy
module which is based on a table of regions. As seen in Fig-
ure 1, a root user can communicate with the policy module
through an ioctl system call to add or remove regions from
the table using a simple application, policy-manager.

We use a table describing a maximum of 64 memory re-
gions and thus a permissions check has O(n) time complex-
ity. A table was chosen in order to minimize pointer chas-
ing, lending speedup over other implementations like the
Linux kernel’s red-black tree (even though the tree would
have O(log n) time complexity). Each entry stores a region’s
lower bound, length, and protection flags. When the guard
function is invoked, the policy module then simply walks
the region table and checks if the access should be permitted.

Whilst the table is effective with a reasonable amount of
performance overhead, there is significant potential to im-
prove this policy structure. Probabilisitic structures, like any

ROSS 23, November 12, 2023, Denver, CO

Userspace

User Space App

l Policy (ioctl /dev/carat)

CARAT KOP CARAT KOP
Policy Module | Call to guard| Protected Module

| Access is determined based on policy*

Kernel

Figure 1: A server owner can configure the CARAT KOP
policy through the ioctl interface.

of a variety of AMQ-filters [2, 8, 36], may very well improve
average performance, as we expect modules to be compliant
with policies for nearly every access, significantly reducing
the number of policy table lookups needed. Modification
of the table to use a locality-sensitive hash function, thus
finding the “closest bucket" of policy-defined regions to an
arbitrary address in constant time, would also be a potential
optimization. The primary tradeoff in modification of the
policy data structure is the inability to maintain overlapped
regions. Importantly, CARAT KOP does not attempt to define
an optimal policy or method of policy checking, but provides
the methodology to easily iterate upon a simplistic structure,
the 64-entry table.

While this specific policy implementation is incredibly sim-
ple, it provides enough capability such that a kernel module
could be restricted from accessing regions it should not be
permitted. For example, the module could be configured to
block access to the direct-mapped physical memory with
a single rule. Or, it could restrict access to the heap to be
read-only.

When the policy module determines that a memory ac-
cess should be forbidden, the expected behavior would be
to halt execution of the module and unload it before dam-
age can be done. Unfortunately, the kernel module interface
is extremely complicated. Forcefully killing and ejecting a
malfunctioning module while it is running can be incredi-
bly dangerous — especially if the module uses concurrency
control mechanisms like mutex locks. For example, if the
troublesome module takes a global lock, then gets unloaded,
the system may eventually deadlock as the lock was not re-
leased. This problem could potentially be solved by utilizing
higher level concepts such as exceptions. When paired with
the “RAII” programming model of that language, exceptions
thrown by the carat_guard function can offer a clean way
to free resources when exceptions are raised.

Unfortunately, most of the kernel is written in C and does
not feature any exception systems. As such, in this work
we currently do not cleanly handle forbidden accesses, and
instead log that they occur and cause a kernel panic.

It is important to point out that a kernel panic is actually
a reasonable response for the HPC use cases we focus on
here (§1). If a specialized kernel module is being brought

Filipiuk, Wanninger, Dhiantravan, Surmeier, Bernat, Dinda

into a production environment, and a guard check fails, then
there are one of three possibilities: (1) the policy set by the
operator is incorrect for the module, (2) the kernel module
has a bug, or (3) the kernel module is attempting to mount
an attack. In all three situations, a hard stop should happen.

3.2 Protected Modules

The second part of CARAT KOP is the protected modules
themselves. These modules undergo the compiler transfor-
mation outlined in §3.3, and as a result have a memory access
policy enforced on them because they call back into the pol-
icy module. Any module in the Linux kernel can be compiled
as a protected module by swapping the compiler for the
CARAT KOP compiler. Out-of-tree modules, which are the
majority of expected HPC modules, can also be readily com-
piled as protected modules using the standard out-of-tree
processes and a change of compiler.

When a protected module is inserted into the kernel (af-
ter validating its signature), it is linked against the policy
module’s implementation of carat_guard. This allows one
guard function to be swapped for another without having to
recompile the guarded module. Once inserted, the module
must adhere to the policy set by the policy module.

3.3 Guard Injection

CARAT KOP compilation is a variant of CARAT CAKE com-
pilation (§2)). Similarly, the CARAT KOP compiler acts on
top of the LLVM compiler infrastructure, and operates on
the middle-end. The compiler was built on top of an unmod-
ified clang 14.0.0. It is important to note that by “compiler”,
we essentially mean a compiler pass that lives within the
LLVM framework. It is separately compiled from the core
compiler, and invoked by a script that wraps the underly-
ing clang compiler. Consequently, our compilation process
could be applied within any modern LLVM framework that
is sufficient to compile the Linux kernel version we are con-
sidering (and hence modules for it). We chose clang/LLVM
14.0.0 because of the particular kernel version we target for
testing (5.17.5).

To enable proper guarding of memory accesses, CARAT
KOP utilizes a compiler transformation that ensures that
guard calls are inserted before loads and stores. To ensure
guards are inserted, it simply iterates over each load/store
operation and insertes a call to the guard function before. Un-
like CARAT CAKE, CARAT KOP does not currently optimize
guards—every memory access results in a guard, even if it
would be redundant. As we show later (§4), despite the result-
ing overabundance of unoptimized guards, the performance
impact is minor.

We do not optimize guards for engineering reasons. CARAT
CAKE guard optimizations leverage the NOELLE analysis

CARAT KOP: Towards Protecting the Core HPC Kernel from Linux Kernel Modules

CARAT KOP Compiler
Arbitrary
(untrusted) clang | opt 14 | CARAT Kon
Kernel LLVM IR Transf dir =5 P
Module | Module
Source Guard Injection Pass
insmod
CARAT KOP
Guard | clang | CARATKOP | insmod .
Module Guard Module Unmodified Linux Kernel
Source

Figure 2: Compilation process.

infrastructure [20], which requires a self-contained “whole
program”. Kernel modules are, by design, not “whole pro-
grams”, but rather are effectively a limited kind of shared
objects intended to be linked into the kernel. On the positive
side, the elimination of analysis and optimization means the
resulting CARAT KOP transforms constitute only about 200
lines of C++.

4 EXAMPLE: E1000E NIC DRIVER

As a proof of concept, and to evaluate overheads, we selected
a network interface driver from the core kernel tree, and
built it as a module, both with and without CARAT KOP.
We then test the throughput and latency of packet launches,
considering both packet size and number of regions involved
in the CARAT KOP policy.

The specific driver we chose was for the “e1000e” family of
Intel 1 Gbit/s Ethernet cards. We choose this driver because it
is not insubstantial and is part of the mainline kernel already
and thus well bug-fixed.

While it is the case that HPC environments typically use
much faster network devices, our purpose here is to quantify
the difficulty in applying CARAT KOP to existing kernel
modules, and to quantify its runtime impact on performance.
Recall that CARAT KOP guards memory references. In the
€1000e, as with much faster NICs, the overwhelming amount
of data transfer occurs due to the DMA engine on the NIC,
which is not checked (and thus not slowed) by CARAT KOP.?
The number of memory references made by the driver to, for
example, construct packet headers and transfer descriptors,
queue transfer descriptors, and access MMIO device registers
is not substantially different between an e1000e and a much
faster NIC.

4.1 Engineering effort

We built a BusyBox/initrd-based “mini-linux” distribution
around kernel version 5.17.5. This distribution simply boots
to a text-based command prompt with no daemons or ser-
vices running, thus allowing us to have a controlled environ-
ment that we can boot the machine from via a USB stick. We
built the distribution using clang instead of gcc, although

3The natural way to control memory access from DMA is using a technology
like the IOMMU or SR-IOV, and is outside the scope of this paper.

ROSS ’23, November 12, 2023, Denver, CO

that is not a requirement of CARAT KOP. In a deployment sit-
uation, the existing Linux distribution would be used instead,
with no effort.

The e1000e driver in the Linux tree comprises about 19,000
lines of source code. In our proof of concept, we extracted
the driver out of the kernel tree and set it up to be compiled
as a separate module using standard mechanisms, reconfig-
ured our kernel to not include its own e1000e driver. We
built two versions of the driver, one with the CARAT KOP
transformation applied, the other without it. In both cases,
the same compiler was used, with the same flags. No code
was modified in the driver. If we were applying CARAT KOP
to a specialized HPC module, that module would already
exist separately from the Linux tree, and thus CARAT KOP
could be applied with a simple recompilation.

In short, the engineering effort needed to use CARAT KOP
for a new kernel module is virtually non-existent.

4.2 Performance

Testbed. We tested the performance impact of CARAT
KOP on two machines. The first is an outdated Dell R415
containing dual 2.2GHz AMD 4122 processors (each has 4
cores, 256 KB L1i/L1d, 2 MB L2, 6 MB L3) and 16 GB of DRAM.
The second is a current Dell R350 containing a 2.8 GHz Intel
Xeon E-2378G processor (8 cores, 16 threads, 256 KB L1i/L1d,
2 MB L2, 16 MB L3) with 32 GB of DRAM. Our test NIC is
an Intel CT (EXPI9301CTBLK) PClIe board that contains an
Intel 82754L chipset. This is attached to a packet sink.

Methodology and factors. We bring the NIC up on a private
IP address, and then test using a user-level tool that sends
raw Ethernet packets to a fake destination. The tool can vary
the number of packets sent and the size of the packets. The
tool measures the throughput of the packet transmissions,
and the latency of individual packet launches.

Another factor we can vary is the number of regions that
are checked by the CARAT KOP policy module. Recall from
§3.1 that we currently do an O(n) search across n regions dur-
ing a guard check. This simple search model is optimized for
cache-friendly search of a small number of regions. If a pol-
icy scheme wanted to consider many regions, an O (log(n))
model could clearly be employed instead.

Minimal impact on packet throughput. Figure 3 shows the
effect of using CARAT KOP on packet send throughput. Here,
we use the R415 machine. We are sending 128 byte packets,
which we believe will show the most significant effects since
the guarded portion of the packet launch is amortized over

ROSS 23, November 12, 2023, Denver, CO

100%
technique
80% 1 —— carat
L 60%- baseline
[a)
© 40%
20% A

0% T T T T T T
105k 110k 115k 120k 125k 130k
Packets per second

Figure 3: CARAT KOP effect on packet launch through-
put on slow R415 machine. Two regions are used.
Packet size is 128. The effect is minimal.

100%
technique
80% 1 —— carat
L 60%- baseline
S
40% A
20% A
0% T T T T T
90k 100k 110k 120k 130k

Packets per second

Figure 4: CARAT KOP effect on packet launch through-
put on faster R350 machine. Two regions are used.
Packet size is 128. The effect is even smaller, and, in-
deed, almost unmeasurable.

only a small DMA transfer.* Our policy is configured to in-
clude two memory regions.”> We run many trials, launching
about 100,000 packets per trial. The figure plots the CDF of
these trials. “Baseline” refers to the unmodified e1000e mod-
ule, while “carat” refers to the transformed e1000e module
combined with the policy module.

As can be clearly seen, the impact of CARAT KOP is very
minimal. The median throughput changes by only about
1,000 packets per second, a relative change of <0.8%.

Figure 4 repeats this experiment on the faster R350 ma-
chine. Here, the impact is even smaller. The relative change
in the median is <0.1%.

We speculate that the reduced impact on the newer ma-
chine is due to a combination of improved caching, branch
prediction, and speculation. In the common case, the control
flow path for guards introduced by CARAT KOP is incredibly
predictable. The guard call will happen, and the region check
processing’s branches will generally go the same way, and
the region check will succeed.

4As we will see later (Figure 6) this is a packet size that does indeed amplifies
the difference between CARAT KOP and the baseline.

SFor two regions specifically, the policy rule is that kernel addresses (the
“high half”) are allowed, but user addresses (the “low half”) are disallowed.

Filipiuk, Wanninger, Dhiantravan, Surmeier, Bernat, Dinda

100%
technique
80% 1 —— carat
o | caratl6é
5 0% carat64
© 40% 1 — baseline
20% A
0% T T T T T
90k 100k 110k 120k 130k

Packets per second

Figure 5: Effect on throughput of varying the number
of regions in the CARAT KOP policy on faster R350
machine. Packet size is 128. The effect exists, but is
small. For very large numbers of regions a O(log(n))
algorithm would ameliorate the effect seen here.

Impact as as a function of the number of regions. In Figure 5,
we repeat the previous measurement, but we vary the num-
ber of regions, n, contained in the policy. The label “carat64”
refers to using CARAT KOP with n = 64 regions in the policy.
As shown, n does have a small, but significant effect. Even
with the worst measured case, however, the relative change
to the median is again <1%.

It is important to point out that for all the curves in the
figure, the exact same number of guards are being executed.
The difference is in the cost of the policy lookup within the
guard. We speculate that our cache-friendly linear search is
probably effective for policies with 64 regions and perhaps
more. At some point, the algorithmic inefficiency will start to
dominate, and it would make sense to switch to a logarithmic
search data structure. The first of these would be simply to
sort the regions in the policy in order, and then do a binary
search over the table instead of a linear scan.

The common case is that we will land in a region contained
in the policy. It also stands to reason that the regions of a
policy will vary in popularity. Consequently, with a large
enough number of regions, a popularity-based data structure
such as a splay tree or a simple cache over the region data
structure (as done in CARAT CAKE) might be able to do
better than a logarithmic search in the common case. Other
ideas for how to enhance region lookup are given in §3.1.

Impact as as a function of the packet size. In Figure 6 we fix
the number of regions to n = 2 and vary the packet size (64,
128, 256, 512, 1024, and 1500 byte packets.) For each size, we
then determine the average slowdown in the throughput. We
see that CARAT KOP’s impact is indeed largely independent
of the packet size as speculated earlier. To the extent the
slowdown varies (maximum is about 2.5%) it is concentrated
on small packets.

Impact on packet launch latency. Previously, we have de-
scribed the effects on packet launch throughput. Figure 7

CARAT KOP: Towards Protecting the Core HPC Kernel from Linux Kernel Modules

1.025 4 ®
/./ \.

1.020

1.015 4

Slowdown

1.010 4
1.005 4

1.000 e

0 200 400 600 800 1000 1200 1400
Packet Size

Figure 6: Effect on throughput of varying packet size
in the CARAT KOP policy on faster R350 machine.

17501 m

technique
1500 4 [Base
[Carat
1250 4 H
1000 4

Count

|
li.

ot il

SHE | | TR

500 600 700 800 900 1000 1100 1200
Latency (cycles)

750 A

500 A

Figure 7: CARAT KOP effect on packet launch latency
on faster R350 machine. Two regions are used. Packet
size is 128. Outliers (for both CARAT KOP and the
baseline) are not included. See text.

shows the effect of CARAT KOP on packet launch latency
on the R350 machine. To be specific, we are using a two
region policy and 128 byte packets. The latency is measured,
in cycles using the cycle counter, as the time spent in the
sendmsg() call from the user-space test application’s point
of view. The figure shows the histograms of these times for
the CARAT KOP and baseline cases. As can be seen, these
are closely matched.

It is important to note that what is being measured here
is effectively the cost of a system call and (usually) the time
needed to queue a set of transmit DMA descriptors on a ring
buffer leading to the 82754L. In the figure, we have hidden
the outliers (which can be in excess of 10 million cycles)
that occur when the ring is full and the test application is
descheduled. Including these outliers, the median times are
694 cycles (CARAT KOP) and 686 cycles (baseline), which is
within the measurement noise of the cycle counter.

5 LIMITATIONS AND FUTURE WORK

CARAT KOP’s memory guarding mechanism could be ex-
tended to restrict kernel module access to files by safeguard-
ing memory regions associated with file system metadata
or inodes, as well as a variety of other kernel internals. By

ROSS ’23, November 12, 2023, Denver, CO

delineating and then guarding the memory addresses that
contain the mapping and access control details of specific
files, CARAT KOP could effectively prevent unauthorized file
operations by a kernel module. Similarly, for inter-process
communication (IPC), the system could enforce policies by
guarding memory regions linked to IPC mechanisms, such as
message queues or shared memory segments. If a kernel mod-
ule attempted an unauthorized IPC action, the CARAT KOP’s
guard would intercept this by detecting an unauthorized
memory access attempt, thereby preventing the communi-
cation from taking place. By extending its memory access
control techniques to the memory structures integral to file
systems and IPC, CARAT KOP could impose granular access
controls over a module’s file and communication operations.
Adding restrictions to additional kernel components could be
done incrementally, without specific shared-state algorithms
that depend on the topology of specific kernel components.
However, these extensions would require a more scalable
way to handle many memory regions.

As of now, CARAT KOP does not attempt to prevent ac-
cess to privileged instructions beyond its compiler attestation
to the lack of inline assembly, meaning any privileged in-
trinsic or builtin is useable from inside of a CARAT KOP
protected module. Instrumentation and wrappers to these
builtins could be added during compilation, such that a guard
is injected and a different policy table could be consulted to
determine if a given kernel module has access to a privileged
intrinsic. CARAT KOP also does not prevent control-flow at-
tacks, where a module might call an arbitrary function in the
kernel to perform a potentially malicious task. Incorporating
guarded modules [12] into the CARAT KOP compilation flow
would help CARAT KOP make assurances about control flow
integrity of protected modules.

6 RELATED WORK

SFI and BGIL Compiler-based techniques to implement soft-
ware protections is not a new concept. Perhaps the earliest
work is Software Fault Isolation (SFI) [4, 10, 30, 35], which
focused on user programs regardless of trust. Address sani-
tizers, for example EffectiveSan [7], are also closely related.
Embedded operating systems such as Tock [19], Theseus [3],
and RedLeaf [22] leverage the properties of Rust to build
protection without hardware support. Unfortunately, these
are not directly applicable to Linux kernel modules.

Byte-Granularity Isolation (BGI) [5] is of particular note.
In contrast to SFI, BGI focuses on memory access rights to
ensure protection, while SFI concentrates on enforcing code
generation constraints to prevent faults. BGI offers a distinc-
tive protection framework by creating separate protection
domains within the same address space, each domain gov-
erned by Access Control Lists (ACLs) for each byte of virtual

ROSS 23, November 12, 2023, Denver, CO

memory. BGI’s commitment to type safety, combined with
its detection mechanisms for common domain-specific er-
rors, works cohesively to reduce risks associated with faulty
kernel extensions. This granularity, while providing a robust
containment, can be resource-intensive, especially when ev-
ery byte in memory requires an independent ACL. CARAT
KOP’s simpler policy scheme may suit caches better. Also un-
like CARAT KOP, BGI does not apply ACLs to reads, raising
the spectre of data-leakage or exfiltration.

Sandboxing, verification, and eBPF. Sandboxing, more specif-
ically eBPF [1], is also a related area of work. The idea of
this work is to set up an environment to run code in the ker-
nel where it is isolated and can be observed. eBPF does this
via a CARAT-like process, but it does not apply to arbitrary
code. Rather, it runs on pseudo-C code that is aware of eBPF.
Therefore, it does not apply directly to general Linux kernel
modules as CARAT KOP does.

eBPF’s primary advantage lies in its assurance that user-
injected code is benign to the kernel in general—guaranteeing
termination, safe memory access, and no information leakage
to unprivileged users. However, eBPF’s verifier—responsible
for these guarantees—does not execute formal verification,
which, combined with the complexity of its code and absence
of a comprehensive testing mechanism, raises concerns about
its infallibility. The verifier operates on an implicit blacklist
principle, implying that for it to be effective, every potential
attack vector should be previously known and neutralized—a
significant expectation. The guarding mechanism in CARAT
KOP aims to avoid the complexities of a blacklist approach.

Finally, eBPF has numerous restrictions, such as instruc-
tion limits and constraints on loops, that limit the possible
use cases compared to general purpose kernel modules.

Proof-carrying code. Proof-carrying code (PCC) [24-26] is
powerful way to allow safe kernel extensibility. If code can
carry a verifiable proof with it that it is safe with respect to
some security policy, and the proof can be quickly verified,
then it is possible to eliminate all guards. Using PCC requires
that a proof be constructed, however, and this is challenging
for complex kernel modules.

Virtualization, driver domains, and LVD. Hardware virtu-
alization can be used to isolate code. The closest work here
is LVD [23]. LVD creates Lightweight Virtualized Domains
(LVDs) by implementing a lightweight hypervisor responsi-
ble for moderating the use of privileged instructions, as well
as switching nested page tables at isolation boundaries to
control memory access. Each module runs under different
guest-physical to host-physical address mapping (different
nested page tables), and communication between modules
and the kernel is done with with Lightweight Execution Do-
mains (LXDs) [21] which make guarantees about preventing

Filipiuk, Wanninger, Dhiantravan, Surmeier, Bernat, Dinda

shared state that may break isolation. Entries to LVDs gen-
erate new per-CPU stacks. LVDs use of LXDs requires each
module to have a specification for its interaction with the
kernel, which is not simple to construct for many modules.

KSplit. KSplit [15] tries to partition device drivers (the
most buggy modules, typically) from the core kernel. KSplit
isolates device drivers through a set of LLVM passes and an
IDL compiler. The driver module is analyzed to automatically
identify shared state between the kernel and the driver, and
the synchronization requirements it needs. It then generates
code which automates such synchronization. In contrast,
CARAT KOP focuses simply on guarding individual memory
accesses in any kernel module. Though an undoubtedly more
comprehensive solution for driver code, the simplicity of the
guarding mechanism in CARAT KOP lends well other kinds
of modules, and allows an operator to set a policy, much like
a firewall.

7 CONCLUSION

Being able to deploy custom Linux kernel modules in HPC
systems, including production systems, would provide many
potential benefits, including the adoption of alternative or
cutting-edge research ideas. However, this is impeded by
legitimate safety concerns that stem from the monolithic
nature of the Linux kernel. We have argued that it is possi-
ble to protect the core kernel from such kernel modules us-
ing a combination of compile-time and run-time techniques.
CARAT KOP and the demonstration of using it to easily
isolate/firewall a relatively large driver with only minimal
performance overhead provide support for this claim.
There are a range of other approaches to isolating Linux
kernel modules, and CARAT KOP could be itself be enhanced
to provide more flexible and complex policies, as well as to
provide more isolation. We hope that some combination of
approaches will be adopted for the benefit of HPC users.

Acknowledgements

This work was made possible with support from the United
States National Science Foundation (NSF) via grants CNS-
1763743, CCF-2028851, CCF-2119069, CNS-2211315, and CNS-
2211508, via the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration,
by the U.S. Department of Energy, Office of Science, under
Contract DE-AC02-06CH11357.

CARAT KOP: Towards Protecting the Core HPC Kernel from Linux Kernel Modules

REFERENCES

[1] [n.d.]. What is eBPF? an introduction and deep dive into the EBPF

[10

[11

(12

[13

=

—

—

[t

—

=

]

—

—_

technology. https://ebpf.io/what-is-ebpf

Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Commun. ACM 13, 7 (jul 1970), 422-426. hittps:
//doi.org/10.1145/362686.362692

Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020. The-
seus: an Experiment in Operating System Structure and State Manage-
ment. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 1-19.

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
2009. Fast byte-granularity software fault isolation. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.
45-58.

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
2009. Fast Byte-Granularity Software Fault Isolation. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles (Big
Sky, Montana, USA) (SOSP "09). Association for Computing Machinery,
New York, NY, USA, 45-58. https://doi.org/10.1145/1629575.1629581
Peter Dinda, Nick Wanninger, Jiacheng Ma, Alex Bernat, Charles
Bernat, Souradip Ghosh, Christopher Kraemer, and Yehya Elmasry.
2022. FPVM: Towards a Floating Point Virtual Machine. In Proceed-
ings of the 31st International Symposium on High-Performance Paral-
lel and Distributed Computing (Minneapolis, MN, USA) (HPDC ’22).
Association for Computing Machinery, New York, NY, USA, 16-29.
https://doi.org/10.1145/3502181.3531469

Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type
and Memory Error Detection Using Dynamically Typed C/C++. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018).

Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzen-
macher. 2014. Cuckoo Filter: Practically Better Than Bloom. In Pro-
ceedings of the 10th ACM International on Conference on Emerging
Networking Experiments and Technologies (Sydney, Australia) (CONEXT
’14). Association for Computing Machinery, New York, NY, USA, 75-88.
https://doi.org/10.1145/2674005.2674994

Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Gou Nakamura,
Tomoki Shirasawa, and Yutaka Ishikawa. 2016. On the Scalabil-
ity, Performance Isolation and Device Driver Transparency of the
IHK/McKernel Hybrid Lightweight Kernel. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). Institute of
Electrical and Electronics Engineers, 1041-1050. https://doi.org/10.
1109/IPDPS.2016.80

GoogleNativeClient [n.d.]. Native Client. https://developer.chrome.
com/native-client.

Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, and Onur Mutlu. 2022. Benchmarking a New
Paradigm: An Experimental Analysis of a Real Processing-in-Memory
Architecture. arXiv:2105.03814 [cs.AR]

Kyle Hale and Peter Dinda. 2014. Guarded Modules: Adaptively Ex-
tending the VMM’s Privileges Into the Guest. In Proceedings of the 11th
International Conference on Autonomic Computing (ICAC 2014).

Kyle Hale and Peter Dinda. 2016. Enabling Hybrid Parallel Runtimes
Through Kernel and Virtualization Support. In Proceedings of the 12th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE 2016).

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

ROSS ’23, November 12, 2023, Denver, CO

Kyle C. Hale and Peter A. Dinda. 2015. A Case for Transform-
ing Parallel Runtimes Into Operating System Kernels. In Proceed-
ings of the 24th International Symposium on High-Performance Par-
allel and Distributed Computing (Portland, Oregon, USA) (HPDC ’15).
Association for Computing Machinery, New York, NY, USA, 27-32.
https://doi.org/10.1145/2749246.2749264

Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang,
Gang Tan, Trent Jaeger, and Anton Burtsev. 2022. KSplit: Automating
Device Driver Isolation. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 613-631. https://www.usenix.org/conference/osdi22/
presentation/huang-yongzhe

Muhammad Jamshed, YoungGyoun Moon, Donghwi Kim, Dongsu
Han, and KyoungSoo Park. 2017. MOS: A Reusable Networking Stack
for Flow Monitoring Middleboxes. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and Implementation (Boston,
MA, USA) (NSDI’'17). USENIX Association, USA, 113-129.

Brian Kocoloski and John Lange. 2014. HPMMAP: Lightweight
Memory Management for Commodity Operating Systems. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium.
Institute of Electrical and Electronics Engineers, 649-658. https:
//doi.org/10.1109/IPDPS.2014.73

John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng
Cui, Lei Xia, Patrick Bridges, Andy Gocke, Steven Jaconette, Mike
Levenhagen, and Ron Brightwell. 2010. Palacios and Kitten: New High
Performance Operating Systems for Scalable Virtualized and Native
Supercomputing. In Proceedings of the 24th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2010).

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming
a 64kB Computer Safely and Efficiently. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP). 234-251.

Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip
Ghosh, Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi,
David I. August, and Simone Campanoni. 2022. NOELLE Offers Em-
powering LLVM Extensions. In International Symposium on Code Gen-
eration and Optimization, 2022. CGO 2022.

Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev. 2019.
LXDs: Towards Isolation of Kernel Subsystems. In Proceedings of the
2019 USENIX Conference on Usenix Annual Technical Conference (Ren-
ton, WA, USA) (USENIX ATC °19). USENIX Association, USA, 269-284.
Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf: Isola-
tion and Communication in a Safe Operating System. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
21-39.

Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and
Anton Burtsev. 2020. Lightweight Kernel Isolation with Virtualization
and VM Functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (Lausanne,
Switzerland) (VEE "20). Association for Computing Machinery, New
York, NY, USA, 157-171. https://doi.org/10.1145/3381052.3381328
George Necula. 1997. Proof-carrying Code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of Programming Lan-
guages (POPL 1997).

George Necula and Peter Lee. 1996. Proof-Carrying Code. Technical
Report CMU-CS-96-165. School of Computer Science, Carnegie Mellon
University.

George Necula and Peter Lee. 1996. Safe Kernel Extensions Without
Run-time Checking. In Proceedings of the 2nd USENLX Symposium on

https://ebpf.io/what-is-ebpf
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/1629575.1629581
https://doi.org/10.1145/3502181.3531469
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1109/IPDPS.2016.80
https://doi.org/10.1109/IPDPS.2016.80
https://developer.chrome.com/native-client
https://developer.chrome.com/native-client
https://arxiv.org/abs/2105.03814
https://doi.org/10.1145/2749246.2749264
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe
https://doi.org/10.1109/IPDPS.2014.73
https://doi.org/10.1109/IPDPS.2014.73
https://doi.org/10.1145/3381052.3381328

ROSS 23, November 12, 2023, Denver, CO

[27]

(28]

[29

—

(30

=

(31]

Operating Systems Design and Implementation (OSDI 1996).

Jiannan Oayang, Brian Kocoloski, John Lange, and Kevin Pedretti.
2015. Achieving Performance Isolation with Lightweight Co-Kernels.
In Proceedings of the 24th ACM International Symposium on High-
performance Parallel and Distributed Computing (HPDC 2015).

Swann Perarnau, Judicael A. Zounmevo, Matthieu Dreher, Brian C.
Van Essen, Roberto Gioiosa, Kamil Iskra, Maya B. Gokhale, Kazutomo
Yoshii, and Pete Beckman. 2017. Argo NodeOS: Toward Unified Re-
source Management for Exascale. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). Institute of Electrical
and Electronics Engineers, 153-162. https://doi.org/10.1109/IPDPS.
2017.25

Mike Rainey, Ryan R. Newton, Kyle Hale, Nikos Hardavellas, Simone
Campanoni, Peter Dinda, and Umut A. Acar. 2021. Task Parallel As-
sembly Language for Uncompromising Parallelism. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 1064-1079.
https://doi.org/10.1145/3453483.3460969

David Sehr, Robert Muth, Cliff L Biffle, Victor Khimenko, Egor Pasko,
Bennet Yee, Karl Schimpf, and Brad Chen. 2010. Adapting software
fault isolation to contemporary CPU architectures. (2010).

S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castelld, D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé, S.
Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun, K.
Taura, and P. Beckman. 2018. Argobots: A Lightweight Low-Level
Threading and Tasking Framework. IEEE Transactions on Parallel and
Distributed Systems 29, 3 (2018), 512-526.

[32]

[33]

[34]

[35]

[36]

Filipiuk, Wanninger, Dhiantravan, Surmeier, Bernat, Dinda

Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVi-
sor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for
Commodity OSes. In Proceedings of Twenty-First ACM SIGOPS Sympo-
sium on Operating Systems Principles (Stevenson, Washington, USA)
(SOSP °07). Association for Computing Machinery, New York, NY, USA,
335-350. https://doi.org/10.1145/1294261.1294294

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda.
2020. CARAT: A Case for Virtual Memory through Compiler- and
Runtime-Based Address Translation. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (London, UK) (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 329-345. https://doi.org/10.1145/3385412.3385987
Brian Suchy, Souradip Ghosh, Drew Kersnar, Siyuan Chai, Zhen Huang,
Aaron Nelson, Michael Cuevas, Alex Bernat, Gaurav Chaudhary, Nikos
Hardavellas, Simone Campanoni, and Peter Dinda. 2022. CARAT
CAKE: Replacing Paging via Compiler/Kernel Cooperation. In Proceed-
ings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’22). Association for Computing Machinery, New York,
NY, USA, 98-114. https://doi.org/10.1145/3503222.3507771

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. 1993. Efficient Software-Based Fault Isolation. In Proceedings of
the Fourteenth ACM Symposium on Operating Systems Principles (SOSP
1993).

Minmei Wang, Mingxun Zhou, Shougian Shi, and Chen Qian. 2019. Vac-
uum Filters: More Space-Efficient and Faster Replacement for Bloom
and Cuckoo Filters. Proc. VLDB Endow. 13, 2 (oct 2019), 197-210.
https://doi.org/10.14778/3364324.3364333

https://doi.org/10.1109/IPDPS.2017.25
https://doi.org/10.1109/IPDPS.2017.25
https://doi.org/10.1145/3453483.3460969
https://doi.org/10.1145/1294261.1294294
https://doi.org/10.1145/3385412.3385987
https://doi.org/10.1145/3503222.3507771
https://doi.org/10.14778/3364324.3364333

	Abstract
	1 Introduction
	2 CARAT and CARAT CAKE
	3 CARAT KOP
	3.1 Policy Module
	3.2 Protected Modules
	3.3 Guard Injection

	4 Example: E1000E NIC Driver
	4.1 Engineering effort
	4.2 Performance

	5 Limitations and future work
	6 Related work
	7 Conclusion
	References

