
Virtualization So Light, it Floats!
Accelerating Floating Point Virtualization

Nick Wanninger
ncw@u.northwestern.edu
Northwestern University
Evanston, Illlinois, USA

Nadharm Dhiantravan
nadharm@u.northwestern.edu

Northwestern University
Evanston, Illlinois, USA

Peter Dinda
pdinda@northwestern.edu
Northwestern University
Evanston, Illlinois, USA

Abstract
Floating point virtualization enables unmodified application bina-
ries to utilize alternative arithmetic systems such as MPFR without
code changes, but its performance overhead is a barrier to adop-
tion. The existing trap-and-emulate model suffers from a signifi-
cant virtualization bottleneck using general-purpose signal delivery
mechanisms which take thousands of cycles. We introduce three
techniques to reduce virtualization overhead. Trap short-circuiting
bypasses general-purpose signal delivery for an 8x reduction in trap
delegation overhead. Instruction sequence emulation amortizes trap
costs by emulating multiple instructions per trap, achieving up to
32x reduction in trap frequency. Finally, kernel-bypass for correct-
ness instrumentation eliminates traps and signals for correctness
and reduces related overheads substantially. Our implementation
within the FPVM system on x64/Linux demonstrates a 10x reduc-
tion in per-instruction overhead which, compared to the lower
bound performance set by the alternative arithmetic system, drops
virtualization overhead from up to 20x to 1.65x. This is for the al-
ternative arithmetic system that is the worst case for virtualization
overheads. More expensive systems, like MPFR, fare even better.

CCS Concepts
• Software and its engineering → Operating systems; Vir-
tual machines; Correctness; Software reliability; Operational
analysis; •Mathematics of computing→ Numerical analysis;
Arbitrary-precision arithmetic.

Keywords
virtualization, floating point arithmetic, software development,
IEEE 754
ACM Reference Format:
Nick Wanninger, Nadharm Dhiantravan, and Peter Dinda. 2025. Virtualiza-
tion So Light, it Floats! Accelerating Floating Point Virtualization. In The
34th International Symposium on High-Performance Paralleland Distributed
Computing (HPDC ’25), July 20–23, 2025, Notre Dame, IN, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3731545.3731584

1 Introduction
Motivation. Floating point virtualization enables unmodified ap-

plication binaries to execute using alternative arithmetic systems,
such as high-precision libraries (e.g., MPFR) or unconventional

This work is licensed under a Creative Commons Attribution 4.0 International License.
HPDC ’25, Notre Dame, IN, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1869-4/2025/07
https://doi.org/10.1145/3731545.3731584

models (e.g., posits, interval arithmetic, and rational arithmetic).
Alternative arithmetic systems permit higher precision, better error
bounds, or other features not available in standard IEEE 754 floating
point arithmetic. This facilitates assessment and experimentation
of alternative arithmetic systems, numerical stability, precision, and
correctness. Floating point virtualization bridges the gap between
the IEEE 754 arithmetic that hardware supports and compilers tar-
get, and the alternative arithmetic systems we might want to try
out in situ in scientific applications.

The specific floating point virtualization tool we consider in
this paper, FPVM [15], implements a “trap-and-emulate” approach,
where the hardware exceptions trigger software handling of floating
point instructions. The original IEEE instructions in the program
run directly on hardware at full speed whenever they can provide a
precise result. When an instruction cannot provide a precise result,
the instruction is trapped by the hardware, and the trap is delivered
to the virtualization system, which then emulates the instruction
using the alternative arithmetic system.

While this enables seamless integration of alternative arithmetic,
the performance overhead of trap-based virtualization is substan-
tial. Ideally, switching to an alternative arithmetic system would
only incur the cost of the alternative arithmetic itself. On modern
x64/Linux systems, the cost of delivering a floating point trap to
user space via standard POSIX signals exceeds 5,000 cycles per
instruction, making trap handling the dominant bottleneck. For
many applications, this overhead results in slowdowns exceeding
1000x, limiting where floating point virtualization can be deployed.
Our work focuses on eliminating these inefficiencies, ensuring that
the overhead of floating point virtualization is dominated by the
cost of the alternative arithmetic system itself, rather than the
virtualization mechanism.

Limitation of state-of-the-art approaches. Prior work on floating
point virtualization has primarily relied on trap-and-emulate mech-
anisms, where floating point instructions execute natively unless
they require intervention (e.g., due to rounding, underflow, or al-
ternative arithmetic). When intervention is needed, the hardware
raises a floating point exception, which is delivered to a user-space
handler via POSIX signals (e.g., SIGFPE, SIGTRAP). This approach,
exemplified by FPVM, allows applications to seamlessly use alter-
native arithmetic without modification.

However, this method suffers from several fundamental limita-
tions: The cost of handling a single floating point trap is dominated
by kernel-to-user signal delivery, which takes 3,800-5,600 cycles per
trap on modern x64/Linux systems. Since only one instruction is
handled per trap, this overhead is incurred repeatedly, making the
virtualization cost excessively high. Many scientific applications
execute tight numerical loops, where sequences of floating point

https://doi.org/10.1145/3731545.3731584
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731545.3731584

HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Nick Wanninger, Nadharm Dhiantravan, and Peter Dinda

instructions execute in rapid succession. In traditional trap-and-
emulate, each instruction in the loop incurs its own trap, exacerbat-
ing the overhead. Additionally, due to x64 architecture constraints,
floating point values can flow into integer registers and memory
locations where traps do not occur naturally. To address this, ex-
isting systems insert special traps before instructions that might
attempt such operations. These invoke the virtualization system
to allow it to maintain correctness, but at the cost of even more
expensive traps to invoke it.

These limitations result in extreme slowdowns—sometimes ex-
ceeding 1000x—restricting the scenarios in which floating point
virtualization is practical to deploy. Our work directly addresses
these bottlenecks by redesigning trap delivery, amortizing trap
costs, and eliminating unnecessary kernel transitions, significantly
improving the performance of floating point virtualization.

Key insights and contributions. FPVM (and other forms of floating
point virtualization) has the goal of having its overhead be limited
by the performance of the alternative arithmetic system, not the
mechanism of floating point virtualization itself. Unfortunately,
the initial implementation was far from this goal except for very
expensive alternative arithmetic systems. An overhead analysis
showed that the key bottlenecks involved the costs of delivering
the hardware traps and exceptions to FPVM, and that only a single
instruction was handled per trap. In this paper, we describe three
software techniques that we have developed to considerably accel-
erate floating point virtualization, and which we have implemented
and evaluated within the context of FPVM. Our implementation
is for x64 machines running Linux, but could be adopted to other
architectures as well.

To address trap delivery overheads, we present trap short-circuiting.
This approach delivers the hardware-initiated traps to the virtualiza-
tion system as quickly as possible by replacing the general-purpose
Linux signal mechanism with a bespoke design for FPVM applica-
tions. This is implemented as a kernel module that processes can
opt into, and it reduces the kernel-to-user transition cost by 8x.

Instruction sequence emulation improves the implementation of
trap-and-emulate by emulating multiple instructions per trap (and
thus amortizing the costs of the transition to the virtualization soft-
ware). We observe that many applications and benchmarks exhibit
runs of IEEE floating point instructions. This should come as no
surprise—one would expect that an inner loop, for example, would
typically have more than one floating point instruction outside
of the simplest of numeric algorithms or lack of optimization. It
is not immediately obvious, however, that a run of floating point
instructions should all be emulated. After all, if we emulate an
instruction that would otherwise have been run directly by the
hardware, emulation for that instruction will necessarily be slower,
regardless of the benefits for the sequence it is embedded in.

Kernel bypass for correctness instrumentation improves the costs
of correctness traps noted earlier by turning them into special calls
between the instrumented program and FPVM, avoiding the kernel
altogether. Additionally, we have considerably improved the rate at
which correctness traps occur by replacing FPVM’s static analysis
and patching approach with a profiling and patching approach.

We evaluate trap-short circuiting, instruction sequence emula-
tion, and kernel bypass for correctness instrumentation on x64

processors via an implementation of the techniques within a Linux
kernel module, and by enhancement of the open FPVM codebase.
We then employ this system on a range of applications and bench-
marks, measuring and analyzing the improvements on overhead.

Our contributions are as follows:

• We summarize the performance issues that arise in a trap-and-
emulate approach to floating point virtualization. These primarily
stem from use of hardware traps and exceptions to drive virtu-
alization. On current x64 systems, these are expensive for the
hardware to deliver to the kernel (hardware → kernel), and ex-
pensive for the kernel to deliver to user-space (kernel → user)
using standard POSIX signals (§2).

• Wedescribe the design and implementation of trap short-circuiting,
which speeds trap delegation and return by 8x (§3).

• We describe the design and implementation of sequence emula-
tion, which amortizes trap delegation costs over multiple instruc-
tions. The amount of amortization depends on the application,
but range from 2 to 32 across our tests. We include an extensive
discussion and workload characterization for this aspect of the
design (§4).

• We describe the design and implementation of kernel bypass for
correctness instrumentation, which avoids both the hardware→
kernel and kernel → user costs when FPVM must be invoked
due to limitations of the x64 hardware and static analysis. This
technique, combined with a profiling based approach to place cor-
rectness traps practically eliminates the overhead of correctness
from the original paper (§5).

• We consider the average cost per emulated instruction across
a range of benchmarks and applications, using the lowest cost
alternative arithmetic system in order to emphasize the virtu-
alization costs. We find that our techniques reduce the average
cost per emulated instruction by up to 12.5x.

Our techniques move the bottleneck to the emulation core, even
for the lowest cost alternative arithmetic system. This moves us
much closer to the goal of floating point virtualization limited
by the alternative arithmetic system instead of the virtualization
mechanisms.

Experimental methodology and artifact availability. FPVM is pub-
licly available from buoyancy-project.org, presciencelab.org or
https://github.com/PrescienceLab/fpvm.

Evaluation with worst-case alternative arithmetic system:
For almost all of this paper, we evaluate FPVM using the “Boxed
IEEE” alternative arithmetic system. This system uses hardware
double-precision floats to perform arithmetic, but places them in
boxes on the heap that are referenced through NaN-boxed pointers.
This system is the fastest alternative arithmetic system and is thus
a “worst case” system for FPVM, as the overheads of virtualization
become the dominating factor in performance reduction. This al-
lows us to focus on the goal of this paper: reducing floating point
virtualization costs.

Our evaluation also includes measurement using the MPFR al-
ternative arithmetic system. Because MPFR is itself more expensive
than Boxed IEEE, overheads are much closer to those of MPFR itself.

buoyancy-project.org
presciencelab.org
https://github.com/PrescienceLab/fpvm

Virtualization So Light, it Floats! Accelerating Floating Point Virtualization HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

2 Floating point virtualization
Before diving into the techniques of this paper to accelerate FPVM,
we will first discuss floating point virtualization as it stands today.
Floating point virtualization seeks to extend the hardware floating
point arithmetic environment available to an existing, unmodified
application binary without requiring changes to the application
binary. The architectural instructions embedded in the binary ap-
pear to execute as normal, but instead are selectively emulated
using the alternative arithmetic system. Data values also appear to
flow through the program as normal, although they are selectively
represented using the alternative arithmetic system. Floating point
virtualization thus enables scientific applications, even in “blessed”
final binary form suitable for production environments, to use alter-
native arithmetic systems, such as MPFR, without changes.1 Ideally,
floating point virtualization would work equivalently to an OS-level
virtual machine monitor, transparently adding this new capability
with minimal to no performance consequences outside of the cost
of the alternative arithmetic system itself.

Our exemplar for floating point virtualization is our previously
published and publicly available FPVM system [15]. We now use
its design to capture the salient issues and provide the basic theory
of operation.

2.1 User-level virtualization
Despite the goal of virtualizing the hardware, FPVM makes the
deliberate design decision to operate at user-level instead of in the
kernel. One reason for this is that porting an alternative arithmetic
system (MPFR, for example) into the kernel is a daunting challenge,
even for kernel developers. Additionally, typical architectures (e.g.,
x64, ARM, RISC-V) do not privilege floating point state and instruc-
tions, and FPVM itself does not need to provide any protection
capabilities either. Both of these points mean being in the kernel
is not required. Another benefit of being in the user space is that
introspection into the running process is much easier and faster.

The overall structure of FPVM is that of an LD_PRELOAD library,
meaning that it inserts itself early in the dynamic library link or-
der involved with startup of the process to be virtualized. ld.so
will use its symbols in preference to those of later shared libraries,
for example, libm. This enables FPVM to override or modify their
behavior. FPVM also exports high-priority constructor functions,
which are then invoked extremely early, allowing FPVM to initialize
well before the main() of the process begins to do its own initial-
ization. FPVM’s constructors are subsequently invoked on every
fork(), allowing the virtualized program to spawn further virtu-
alized subprocesses. The startup of new threads using pthread or
clone() is also intercepted so that FPVM can create an execution
context for each thread. By default, FPVM also uses standard POSIX
signal configuration (sigaction) to arrange to have the SIGFPE
(floating point error), and SIGTRAP (breakpoint) signals delivered to
its own handlers. The handlers can reassociate the execution con-
text with the thread producing the signal. Virtualization operates
on a per-thread basis, and is explained below.

1We do not mean to imply that the composite of the blessed final binary and FPVM
would also be blessed, merely that floating point virtualization would allow evaluation
of alternative arithmetic systems using the blessed binary.

Alternative arithmetic system interface. FPVM has a well-defined
interface to the alternative arithmetic system,which allows different
choices to be compiled in. In this work, we use Boxed IEEE for the
most part, as well as MPFR.

2.2 NaN-boxing
An important difference between FPVM and traditional virtualiza-
tion is that FPVM needs to use the alternative arithmetic systems’s
representation of numbers without changing how the application
itself uses them. This means that FPVM must somehow represent
these alternative numbers in the space used by the floating point
numbers that the original machine instructions produce and con-
sume. FPVM accomplishes this using NaN-boxing [10, 35]. When a
result is produced using the alternative arithmetic system, a pointer
to that result is encoded as the mantissa of a 64 bit signaling NaN.
When another floating point instruction (e.g. addpd) consumes that
value the hardware will trap to FPVM (§2.3), allowing the operation
to be performed in the chosen alternative math system.

We refer to the process of producing a NaN-box-encoded value
in the alternative arithmetic systems as a promotion. A NaN-boxed
encoded value can also be converted back to a regular 64-bit IEEE
754 value (thus losing the precision or benefits of the alternative
math library). We refer to this as a demotion.

Differentiating our NaNs, their NaNs, and alternative NaNs. FPVM
must be careful to distinguish NaN values which it owns and those
it does not. FPVM’s NaNs encode pointers to objects FPVM has
allocated, and FPVM’s allocator tracks these pointers. Given a NaN,
we check its bit pattern to see if it could have come from FPVM. If
not, we assume it is an application NaN. Canonical form NaNs also
are detected quickly by this check. If it does have a compatible bit
pattern, we extract the pointer from the NaN and check to see our
allocator remembers it.

The mantissa space of an IEEE double is 52 bits. For a NaN, two
of these are constrained to encode a nonzero bit and to differentiate
between signaling and quiet NaNs. This leaves 50 bits to play with.
The probability that a randomly drawn NaN happens to both match
our pattern and to encode a pointer our allocator returned is 1 −
(1 − 2−50)𝑛 for 𝑛 active allocations. Even for one billion active
allocations, this less than a one in a million chance.

Even this is applicable to only NaNs that flow into the program
(e.g. from an input file.) If a NaN is produced by instruction execu-
tion, this triggers FPVM, which will perform the operation using
the alternative arithmetic system. This might itself produce an “al-
ternative NaN”, which is allocated and NaN-boxed by FPVM and
thus a non-problem.

2.3 Floating point traps
When a thread starts, FPVM configures a thread-local context, along
with the thread’s mxcsr register to tell the x64 hardware to produce
traps when a floating point instruction causes a floating point ex-
ception such as Invalid (NaN consumed or produced), Round (result
would be rounded), Overflow (infinity produced), Underflow (Zero
produced), and Denorm (denormalized number produced). FPVM
manages mxcsr so that each instruction that raises a floating point
exception causes a trap.

HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Nick Wanninger, Nadharm Dhiantravan, and Peter Dinda

By default, x64 dispatches floating point traps into the Linux
kernel using standard exception mechanisms. This has a hardware-
dependent cost. On our testbed, this dispatch costs roughly 380
cycles, which is quite fast. We denote this cost hw. The Linux kernel
then takes this exception and injects it back into FPVM as a SIGFPE
signal. The signal delivery depends heavily on the kernel and the
hardware, and on our testbed this cost is roughly 3800 cycles to
deliver the signal, with an included cost to return using a sigreturn
system call of 1800 cycles. We denote the cost of delivering the
exception to userspace as kern, and returning as ret.

When FPVM is invoked by a SIGFPE, there are two different
routes it can take. First, the signal may be due to a Round, Underflow,
Overflow, or Denorm condition. This means that no exact result is
possible within the limits of IEEE 754. Here, temporary copies of
the input operands are promoted, a result is computed using the
alternative arithmetic system, and that result is then NaN-boxed
and written to the output operand. In the second case, the signal is
due to an Invalid condition (a NaN). If this happened because an
input operand was one of our NaN-boxed values, we promote all
other inputs which are not already NaNs, invoke the alternative
arithmetic system to compute the result, NaN-box it, and write it
to the output operand. It is also possible that the Invalid is due
to regular input operands producing a NaN output (for example,
0.0/0.0). This is treated like the first case, with the extension that
we can store a canonical NaN to the destination to represent that
the result is a “real NaN” instead of one of FPVM’s boxed ones.

Although FPVM focuses on increased precision, using doubles as
the baseline, it could support decreased precision by having every
floating point instruction trap. On x64, this can be readily done
by disabling the floating point hardware altogether. This is not
currently done.

2.4 Instruction Decoding and Emulation
In processing a SIGFPE signal, FPVM incurs four main costs: decode,
binding, emulation, and garbage collection. The first thing FPVM
must do is decode the instruction which caused the exception to de-
termine which registers to use as input, output, and what operation
to perform on them. Decoding an instruction on x64 is non-trivial,
and as such FPVM features a decode cache which records previ-
ously decoded instructions for later use. The cost of the lookup in
this cache, which is almost always a hit, is denoted decache. This
cache hits because scientific applications are comprised mostly of
loops, and instructions are re-executed often. If FPVM misses in
the decode cache, it decodes the faulting instruction with the Cap-
stone disassembler [1] and creates an FPVM-specific representation
(which is ultimately intended to also be architecture independent).
The cost of invoking Capstone is denoted decode.

Once the instruction is decoded, FPVM binds the operands, a
cost we denote as bind. Binding takes the decoded instruction and
computes pointers into the the ucontext register state and memory
to be used as input and output parameters for emulation. Finally,
FPVM emulates the instruction using a custom emulator that lever-
ages the FPVM-specific representation and interfaces with the alter-
native arithmetic system. This cost is denoted emul. Recall that we
are using Boxed IEEE, the fastest alternative arithmetic system in
this paper in order to spotlight the overheads of the system which

are not emulation. As such, when we measure emul, most of the cost
captured is external to the alternative arithmetic system (altmath).

2.5 Garbage collection
Another cost which FPVM must pay for each SIGFPE is to poten-
tially invoke a garbage collector. Because FPVM allocates and en-
codes pointers to heap objects in (often temporary) NaNs, garbage
can readily result, and it must be collected to avoid an explosion of
memory usage. For example, if a register containing a NaN-boxed
encoded pointer is overwritten each time through a loop, each it-
eration results in a potentially orphaned value in the alternative
arithmetic system which is no longer referenced. An interesting
side-effect of how these references are used is that despite being
heap objects, they must operate as if they were values. This means
they must be immutable, as multiple registers can contain refer-
ences to the same object, and changing one register’s value through
mutation would incorrectly change the other.

FPVM’s allocator performs garbage collection of values which no
longer have live references via NaN-boxed pointers. This is a highly
specialized form of garbage collection since the objects managed
by the collector never have pointers themselves, and it is only
concerned with finding NaN-boxed values. Despite this, the GC is
still a very traditional conservative mark-and-sweep collector, and
performs a scan over all writable pages of virtual memory, marking
all objects found in NaN-boxed references, sweeping (freeing) the
unmarked objects when done. Thes cost is denoted gc.

2.6 Correctness instrumentation
Unfortunately, x64 floating point hardware is not entirely virtu-
alizable. This is due to the ability to perform non-floating point
operations on the same registers used for floating point (e.g., the
xmm/ymm/zmm register sets), the ability to move between the floating
point and general purpose register sets, and because floating point
values can flow into integer contexts via memory (for example,
by casting a double* to a long* and reading the bits directly). To
address this, FPVM features a static analysis which can conserva-
tively determine points in a program where a floating point value
cannot be interpreted as an integer. Equivalently, it determines the
points where a floating point result could flow and would not be
caught by the hardware when accessed. It then patches the binary
at these points using e9patch [16] to include an int3 instruction.
At runtime, this instruction causes a hardware breakpoint excep-
tion to be delivered to the kernel which is then delegated to FPVM
through a SIGTRAP signal. At this point FPVM can determine if
a NaN-boxed value is flowing in this dynamic instance of the in-
struction. FPVM can then emulate the instruction or single-step
over it after demoting any possible NaN-boxed values in doing so.
We denote this cost as corr, and some applications feature more of
these faults than others. In terms of virtualization costs, there is
a complex interplay between what the analysis can find statically,
the costs of evaluating the problematic instructions dynamically,
and the probability of a NaN-boxed value actually flowing through
the instruction.

Finally, for code that is not available for static analysis (e.g. shared
libraries), the binary is patched with a similar int3 before the call,
and arguments are demoted in a similar way. This is important for

Virtualization So Light, it Floats! Accelerating Floating Point Virtualization HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

0 2000 4000 6000 8000
Amortized CPU Cycles

Double
Pend.

Enzo

fbench

ffbench

Lorenz

3-body

hw
kernel

decache
decode

bind
emul

altmath
gc

fcall
corr

ret

Figure 1: Breakdown of baseline costs (amortized to the cost
per emulated instruction) in FPVM using Boxed IEEE as the
alternative arithmetic system. The main portions of the over-
head come from costs outside of emulation (hw, kern, ret).

functions such as printf, which perform bit-wise interpretation
of floating point values in order to print them. We denote this
cost as fcall, and the quantity of these traps similarly varies heavily
between applications. In a fully virtualizable architecture (described
in [15]), the corr and fcall costs would not exist.

2.7 Breaking Down the Costs of Virtualization
Figure 1 shows the baseline starting point of FPVM on our test
platform, which includes none of the three optimizations described
in this paper. We amortize all costs over emulated instructions to
consider the expected cost of any particular emulated instruction.
At the core of emulation is the cost of operations in the alternative
arithmetic system, which is unavoidable (altmath). The other costs
are the focus of the paper. To be more specific, in this work we
focus on everything other than altmath from the figure—hw, kern,
decache, decode, bind, gc, fcall, corr, and ret—as described above.2
Our goal is to reduce the non-intrinsic overheads that are not part of
the alternativemath implementation to the lowest possible amount—
the altmath component should dominate each bar of this graph.

Note that, in this paper, we use “Boxed IEEE” as our alterna-
tive arithmetic configuration. This just means that we allocate
double precision floating point values on the heap and use NaN-
boxed references to them, simulating the number of traps from
a higher complexity altmath implementation. In the baseline fig-
ure, all benchmarks incur the same overhead for hw, kern, and
ret, but feature unique overheads for altmath, gc, and correctness,
based on their specific implementation characteristics. For example,
Lorenz generates less garbage than Enzo as its internal state is
much smaller, and 3-body has more correctness traps (corr) due

2In comparison to the numbers reported in the original FPVM paper, which ran on
substantially older hardware and software (Dell R815, 2.1 GHz AMD Opteron 6272, 128
GB RAM, Ubuntu 16.04 with 4.4.0 kernel, gcc 5.4 toolchain), our numbers on current
hardware and software are overall comparable, though the new hardware has an hw
cost that is about 5x lower in cycles (and this new hardware has a much faster clock).

Faulting Instruction FPVM

Custom
DeliveryFPVM Trap

Handler

Kernel

Userspace~380 cyc.

~350 cyc.

~30 cyc.

no Regular signal delivery

and return (~5600+ cyc.)

yes
Registered?

1 (#XF)

(iretq)

6

3

2

5

4

(ret)

Figure 2: Replacing the SIGFPE signal delivery with trap
short-circuiting reduces the overhead of delivery by 8x.

to how it writes more floating point data to the filesystem using
fprintf (requiring demotions as described above).

3 Trap short-circuiting
Ultimately, FPVM’s largest overhead comes from how it is invoked
by floating point traps which the kernel delegates using signals. As
noted in §2.3, this overhead involves to substantial costs, one being
the time for the hardware to dispatch the trap to the kernel (380
cycles), and the other being the time to deliver the SIGFPE signal
to userspace (3800 cycles). As can be seen in Figure 1, the kernel to
user dispatch (kernel) is the dominant cost, which was also found
to be the case in the original FPVM paper. The signal delivery and
return mechanism is entirely in software, and has the potential to
change drastically with a different design.

To reduce this overhead to zero, a highly aggressive redesign
of FPVM might be to move it to operate entirely within the kernel,
which would result in 3800/380 = 10𝑥 lower overhead for kern+hw
on our platform. Of course, this would be a monumental effort as
many of these arithmetic systems are implemented with user-level
assumptions, and the kernel is not permitted to use floating point
itself—a requirement of some alternative math libraries such as
MPFR. Therefore, we present a system to reduce, rather than elimi-
nate, the overhead of trap delegation delivery back to userspace to
the lowest level permitted by the kernel and the hardware while
maintaining compatibility with unmodified Linux on x64 systems.

3.1 Design and implementation
To reduce the overheads of trap delegation, wemust first understand
the overheads of signal delivery. Normal signal delivery (for exam-
ple, SIGFPE) is a general purpose mechanism and involves fairly
complex processing. Signals may be sent to descheduled threads,
can be masked, and their priorities can be changed. Additionally,
when a signal is delivered, the user must enter the kernel a sec-
ond time to notify it that further signals can be delivered using
sigreturn before returning back to the faulting instruction. For
the sake of FPVM, these general mechanisms are not required, and
an alternate co-designed approach which bypasses them can reduce
the overhead considerably.

To this end, we have implemented a Linux kernel module which
replaces the x86 trap handler for #XF (SIMD floating-point excep-
tions) and delivers the exception to the FPVM at an extremely early
point in the kernel. This operation is outlined in Figure 2. When a
floating point instruction causes a rounding event, consumes a NaN,

HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Nick Wanninger, Nadharm Dhiantravan, and Peter Dinda

or otherwise faults, the CPU triggers a #XF exception which is sent
to the kernel in roughly 380 cycles 1 . By default, the linux kernel
would call a method math_error() which ultimately attempts to
deliver a SIGFPE signal to the user application through the general
purpose signal delivery mechanism. However, with our modifica-
tions to the trap handler, a user application can “register” itself
through an interface in /dev. If an application does not register 2 ,
a trap will be delivered via the normal signal delivery mechanism–
staying compatible with the rest of the system 3 . If registered, the
kernel module bypasses the entire signal delivery infrastructure
and instead use a custom delivery mechanism designed specifically
for FPVM’s needs 4 .

This mechanism essentially steals the hardware trap from Linux,
modifying it to perform the bare-minimum processing required to
hand control over to the FPVM user-space handler. First, it edits
the x64 interrupt frame to redirect execution upon the interrupt
return (iret) as well as bypass the red-zone.3 Then, it stores the
necessary state to allow for the user-space handler to unwind back
to the faulting instruction. After this, the kernel module returns
to the trap handler, executes the iret instruction, and execution
resumes at FPVM’s user-space handler 5 .

FPVM’s core user-space handler is wrapped by an entry and
exit stub. The entry stub acts as the “landing-pad” to which the
kernel jumps. It saves a sufficient amount of state in the format of a
ucontext to roughly match the interface of a signal handler. This
allows FPVM to continue operation as if it has received a SIGFPE.
The FPVM handler for floating point traps can then manipulate
this “fake” ucontext as it normally would do. When the handler
returns to the exit stub, the stub restores the machine state using
the in-memory ucontext-like data, including finally jumping back
to the address that FPVM has decided upon.

Currently, FPVM eagerly saves and restores the entire GPR and
FPR state, FP control state (e.g. mxcsr), and rflags. It is outside of
the scope of this paper, but a possible future optimization might
be lazy save/restore of this state. Especially as the floating point
state keeps growing (xsave can currently occupy a whole page),
this might lead to even lower overhead, albeit with a substantial
engineering cost in FPVM.

The kernel module exports an ioctl() based interface via the
/dev/ filesystem. When FPVM initializes a process, it checks for
the existence of this device, and attempts to open it and register its
entry point for the user-space entry stub/landing-pad. When FPVM
shuts down (or the process crashes), the device is closed, and the
process’s registration is revoked.

4 Instruction Sequence Emulation
Recall from §2.4 that FPVM decodes, binds, and emulates a single
instruction in response to a floating point trap—the instruction that
caused the trap to occur. This has a number of advantages, the most
important being that only instructions that can cause a floating
point trap need to be handled. However, this single-instruction-at-
a-time model also means that the high cost of trap delivery to the
kernel (hw) and from kernel to user (kern) is borne for every single

3Red-zone is an x64 ABI optimization that allows the active stack frame to extend below
where the stack pointer currently points by 128 bytes. This 128 bytes of potentially
live data must be carefully avoided.

instruction that might trap. Even if we dramatically reduce the
hw+kern+ret time (from 5980 cycles to about 760 cycles using trap-
short circuiting (§3)), we still have pay that cost for each trapping
floating point instruction. The goal of the present optimization is
to lower the impact of this cost by emulating multiple instructions
per trap, and thus amortizing the cost. Additionally, in deployment
environments in which including a kernel module is not allowed,
the optimization would be even more valuable because it would
amortize the resulting much higher hw+kern costs (5980 cycles).

4.1 Tradeoffs
While it may seem obvious that this is a good idea, it is important
to point out that much depends on the nature of the actual work-
load, such as the length distribution and popularity of sequences
of emulatable instructions, and whether emulating the additional
instructions is warranted. To see the latter subtle point, consider a
sequence of instructions A,B in which A faults, and we are also able
to emulate B. This would let us amortize the fault over two instruc-
tions, which is a win. However, suppose that B does not need to be
emulated. For example, perhaps it involves operands that are not
NaN-boxed and the operation does not round. Then we are doing
an unwarranted software emulation of B, which will take much
longer than simply executing it, which is a loss. In addition, this
might generate more NaN-boxed values than are truly necessary.

We also need to consider the software engineering aspects. Sup-
pose we have an instruction sequence X, Y, Z, in which X faults, and
Z would also fault, but Y is not a floating point related instruction
at all. In order to be able to amortize the fault cost of X over both X
and Z, we must implement support for Y. There is a rabbit hole here
in which we could easily end up trying to implement a complete
system emulator.

4.2 Implementation
We have enhanced FPVM’s logic to support multiple instruction
sequences. Starting with the faulting instruction, it keeps decod-
ing/binding/emulating instructions until one of the following con-
ditions occurs:

(1) It encounters an instruction for which it has no decoding,
binding or emulating support, or

(2) It encounters an instruction it can decode, bind, and emulate,
but where no source operand is NaN-boxed.

As the process continues, we update the decode cache with each
instruction. This includes placing the sequence-terminating instruc-
tion into the decode cache if we have not seen it before, even if case
(1) holds. The result is that the decode cache is now effectively a
software version of a trace cache [29]. When a sequence/trace is
encountered again, each instruction will hit in the decode cache.

Note that (2) implies that it is possible for us to stop emulating on
some instruction W, return to the program, and then immediately
have W fault because of a Round, Overflow, Underflow, Denorm,
or even Invalid event, the latter because the instruction produced
a NaN. The operation we describe will result in correct behavior,
and to truly avoid it for performance reasons would entail us first
having to first emulate the instruction W in the IEEE 754 system to
see if it would produce any of these effects. We did not think this
was worth the engineering effort.

Virtualization So Light, it Floats! Accelerating Floating Point Virtualization HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

Our implementation also optionally collects detailed statistics
on sequences/traces that are actually encountered during execu-
tion to generate a detailed profile. This allows us to go far beyond
basic amortization benefits in terms of counts and costs, including
determining the distribution of sequence lengths, the rank popular-
ity of sequences, the impact of sequences on overall performance
(combining sequence length and rank popularity) and the individ-
ual sequences themselves, showing the assembly instruction of
each sequence, including the terminating instruction and why it
terminated the sequence. § 6.3 presents a workload characterization
using this instrumentation.

Extending the decoder and emulator. To increase instruction se-
quence length in the face of (1) requires adding support for more
instructions. We used our profiling tool to identify critical instruc-
tions to add. Our current design essentially only adds the x64 inte-
ger and floating point move instructions. While seemingly simple,
there are a vast set issues that arise in these, including different
source and destination sizes, sign extension versus zero-extension,
integer/floating point conversion due to moves between GPRs and
FPRs, string moves, as well as untangling move functionality that
is slightly different in different extension families. We implemented
support for about 40 move opcodes, and decided to ignore (for now)
an additional 123. We also currently ignore all control flow instruc-
tions, so our traces are bounded by basic block size, but this does
not seem to be a major blocker.

Compared to the baseline, we also added support for the cmpxx
family instructions (e.g., vcmpltsd), but this was largely because
the initial FPVM codebase we started from omitted these because
testing was done on a target platform that did not produce them.

Arguably, this exercise would be considerably simplified on a
RISC architecture, such as RISC-V or ARM.

5 Kernel-bypass for correctness
instrumentation

Recall from §2.6 that correctness instrumentation is introduced into
the binary being virtualized via a static analysis process that patches
the binary to handle flows of potentially NaN-boxed floating point
values to non-floating point contexts (memory-escape correctness),
and to handle flows of arguments into functions in shared libraries
that are not subject to the analysis (foreign function correctness). The
latter occurs due to the engineering challenge of having all binary
code available (or having a large application be statically linked).
The static analysis and both correctness traps could be avoided if
the x64 floating point hardware were fully virtualizable.

In the baseline system, both forms of correctness instrumenta-
tion are handled by having the analysis place int3 instructions
before the problematic instructions. These invoke FPVM via hard-
ware dispatch of a breakpoint trap and kernel signal delivery of
SIGTRAP, and allow it to demote values if necessary. The goal of
the present optimization is to avoid both the hardware and kernel
components. Because FPVM is part of the process and linked into its
ELF chain, we can, in principle, replace the int3 with a direct call
to the correctness handler. This would reduce overheads by several
thousands of cycles for each correctness trap, as the program would
not have to transition through the kernel. Unfortunately, this is not

as trivial as inserted calls are later in the ELF chain than FPVM, and
thus cannot see symbols exported by FPVM.

5.1 Profiling Instead of Static Analysis
The previously reported method of finding instructions which re-
quire memory escape traps for correctness required a binary static
analysis. This analysis worked at an instruction level, and per-
formed Value Set Analysis to find which integer instructions a
floating point value might flow into through memory. This anal-
ysis is equivalent to alias analysis, and its runtime and memory
demands tend to explode. For example, Enzo takes multiple days
and requires terabytes of swap to statically analyze. This makes it
difficult to use the prior version of FPVM on large applications.

To address this problem, we have written a new analysis which
utilizes profiling instead of binary analysis. We built a tool on top
of PIN [25] which instruments all memory operations in the ap-
plication. When a floating point value is stored to memory4, the
eight byte block of memory it is stored to is marked as “contain-
ing a float”. If an integer instruction then reads from any location
marked as containing a float, that instruction is added to the set
of instructions that need to be patched. The profiler also unmarks
memory blocks as containing floats in several situations: stack un-
winding, storing an integer, etc. The output from the profiler and
analysis are roughly the same—a set of integer instructions which
must have any potential FPVM-owned NaN-boxed values in the
destination registers demoted before they can they can continue.
The profiler will identify fewer instructions, however, because it
is dynamically considering the flows in a specific run instead of
statically considering all possible flows.

Our profiler allows developers to patch their application for
FPVM by simply profiling it with the same workload, which takes
much less time than the previous static analysis. We use this profiler
throughout the evaluation of the paper, as it does not produce
different performance results compared to the prior binary static
analysis.

Note that, due to the memory and time requirements of the previ-
ous static-analysis approach, we were unable to use it as a baseline
and instead only use our profiling approach in our evaluation. A
comparison of the results from original FPVM paper [15, Figure
9] with Figure 1 readily reveals that “correctness overhead” has
been nearly entirely eliminated across all the cases where it was
previously significant. This is because the rate of correctness traps
is much lower.

5.2 Magic traps for Memory-Escape Correctness
Before executing an instruction which uses a floating point value
in a non-floating point way (for example: interpreting a floating
point value as an integer to extract the sign bit) that value must
first be demoted from the NaN-boxed representation back to a float.
This kind of reinterpretation is usually done through an escape to
memory, where a float is stored to memory, and an integer is loaded.
As illustrated in the left half of Figure 3, the previous approach used
e9patch to introduce an int3 instruction before the troublesome

4x64 is surprisingly well typed, and compilers will emit instructions which are tagged
as “scalar double” for double stores (movsd)

HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Nick Wanninger, Nadharm Dhiantravan, and Peter Dinda

Faulting
Instruction FPVM

Signal
Delivery

Linux
Kernel

Kernel

~3800 cyc.

~1800 cyc.
~380 cyc.
(int3) (SIGTRAP)

Userspace

2

341

Faulting
Instruction FPVM

Signal
Delivery

Linux
Kernel

(call)

(ret)

Kernel

~100 cyc.
Userspace

5

Traditional Traps Magic Traps

Figure 3: Magic traps bypass the kernel, saving thousands of
cycles per trap, when memory correctness traps are needed

instruction to trigger a trap to kernel mode 1 . The kernel then dis-
patches this trap 2 through a slow general purpose interface and
delivers a SIGTRAP to FPVM 3 which calls the function to demote
the troublesome value before returning through a sigreturn 4 .

Our approach to accelerating this instrumentation, “magic traps”,
is outlined in the right half of the figure. The main difference is
that instead of an int3 instruction, the patcher instructs e9patch
to insert a call before the offending instruction which invokes
a “trampoline” function which is linked into the patched binary.
Because this call is patched into the binary at unknown locations—
where a call was not originally planned—this trampoline function
must take care to not clobber any values in registers or on the stack.
It first shifts the stack pointer past the red-zone and saves all regis-
ters similar to a context-switch. Because of the placement on the
ELF linker chain the trampoline cannot directly invoke FPVM and
upon first invocation must rendezvous with the FPVM runtime to
call the demotion handler. To that end, when FPVM starts it maps a
“magic page” into the process address space at a well known adress
(similar to VDSO) and populates it with a cookie and the address of
the demotion handler function. The trampoline function then reads
this magic page and recovers the pointer to the callback function.
Subsequently, all patched instructions invoke FPVM through this
pointer. In this way, the hardware trap (380 cycles), signal dispatch
(5600 cycles with SIGTRAP + sigreturn, 350 cycles with the kernel
module) costs are replaced with the cost of what is effectively a
double-indirect call and return (about 50 cycles) 5 . These “magic
traps” reduce the cost of getting into FPVM to deal with memory
escape correctness by a 14-120x. In combination with the improve-
ments brought by the profiler, magic traps effectively eliminate the
overhead of memory escape correctness instrumentation.

5.3 Magic wraps for Foreign Function
Correctness

Because the static analysis pass which identifies memory escapes
cannot run on functions from external libraries such as libc, wemust
conservatively assume that those functions will interpret floats as
integers. As a motivating example, consider the library function
printf which, when printing a floating point value, will interpret
the bits themselves to determine features such as the sign of the
floating point number. On x86 these operations cannot cause a trap,
and are thus lost to FPVM, leading to incorrect program output.5
To handle this we use LD_PRELOADwrappers, where a wrapper stub

5Often, this results in the program printing “nan” or “-nan” to the terminal

function for some shared library function is injected into the link
chain (printf() for example). Because of its appearance earlier in
the dynamic link order, the application will invoke the FPVM stub
instead of the “real” function.

We have implemented two approaches to function wrapping.
The first is to generate these wrapper functions as assembly code
with callbacks to FPVM functions written in C that perform prepro-
cessing (demote argument register contents, set mxcsr, etc)6. These
wrapper functions are constructed using carefully crafted assembly
which manages the stack frame so that from the perspective of
the wrapped function (e.g. the real printf) the wrapper function’s
stack frame does not exist. This is necessary to correctly handle
cases where arguments are passed via the stack. Additionally, the
wrapper must carefully manage its own use of registers as to not
clobber any arguments or callee saved register values so they are
not changed on entry to the wrapped function. The problem with
this approach is that any function which is wrapped cannot be used
from within FPVM itself. For example a call to a wrapped printf
from within FPVM will invoke another part of FPVM which could
itself call printf.

The second approach, whichwe call “magic wrapping”, generates
these wrapper functions in the sameway as the native approach, but
places them in a different namespace entirely (e.g. printfwill have
a wrapper named printf$fpvm generated). We then use Lief [2] to
modify the program’s symbol table to point to these new wrapped
functions instead. This namespacing ensures that wrapped func-
tions are totally independent of FPVM’s own namespace, which
means FPVM does not need to carefully control its own use of
symbols.

The libm functions are always configured with special hand-
written forward wrappers that interface with the alternative arith-
metic system. We use magic wrapping in our evaluation. Because
the wrapper functions and how/when they are called are identical,
there is no performance difference compared to forward wrapping.

6 Evaluation
Wenow evaluate the effectiveness of the aforementioned techniques
to accelerate floating-point virtualization by reducing the cost of
trap delivery with trap short circuiting and sequence emulation. We
test FPVM against a mix of benchmarks and applications. Our test
code consists of the FBench floating point benchmark suite [33],
the FFBench fast Fourier transform benchmark [34], a version of
the Lorenz system simulator that we developed, and a three-body
problem simulation. We also evaluate FPVM against Enzo [9], an
astrophysics and hydrodynamics simulator written in about 307,000
lines of C, Fortran, and Python. Because we are using the “Boxed
IEEE” alternative arithmetic implementation for all of these tests,
we expect to get bit-for-bit equal results to the baseline, and we
have validated this to be true.

All testing was conducted on a Dell R6515 with an AMD EPYC
7443P 24-Core Processor capable of boosting to 4GHz with 512GB
of DDR4 3200MT/s memory in one NUMA domain. This processor
supports all floating point extensions besides AVX-512. The ma-
chine runs Ubuntu 22.04 (jammy) with Linux kernel version 5.15.

6The postprocessing step does not need to promote anything as all floating point
registers are defined by the ABI as being caller-save.

Virtualization So Light, it Floats! Accelerating Floating Point Virtualization HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

Double
Pend.

Enzo fbench ffbench Lorenz 3-body

Benchmark

0

1000

2000

3000

4000

5000

Sl
ow

do
wn

 3
98

.1
x

 5
61

7.
7x

 3
82

.4
x

 2
55

4.
2x

 4
27

.6
x 1

22
2.

6x

 1
98

.6
x

 3
95

6.
2x

 2
28

.5
x

 5
19

.3
x

 5
6.

1x

 3
27

.2
x

 9
9.

9x

 7
94

.8
x

 1
26

.5
x

 5
83

.8
x

 9
0.

0x

 2
71

.3
x

 7
3.

3x 6
87

.4
x

 1
04

.8
x

 3
34

.5
x

 3
7.

3x

 1
47

.4
x

Application Slowdown
NONE
SEQ
SHORT
SEQ SHORT

Figure 4: Using the techniques described in this paper, the
end-to-end runtime slowdown of floating point virtualiza-
tion, as exemplified by FPVM, has been reduced by an order
of magnitude. Note that this overhead includes the intrinsic
slowdown of the worst-case alternative arithmetic library.

GCC 11.4 was used to compile all code. With this evaluation, we
seek to answer the following research questions:

• Q1: How do the acceleration techniques outlined affect the
overheads of FPVM? How close are these overheads to the
lower bound? (§6.1)

• Q2: To what degree do the acceleration techniques reduce
virtualization overheads for any given instruction? (§6.2)

• Q3: How effectively does sequence emulation amortize the
cost of floating-point traps, and what are the practical con-
straints on trace cache size needed to achieve significant
performance gains? (§6.3)

• Q4: How do these techniques extend to a more complex
alternative arithmetic system (e.g. MPFR)?

6.1 Our Acceleration Techniques Reduce the
Overhead of Virtualization Considerably

To answer Q1, we ran the applications mentioned above both with
and without FPVM, for each of the combinations of our acceleration
techniques, measuring wall-clock execution times. Figure 4 shows
the results of this test.

The baseline configurationwith no acceleration techniques (NONE)
shows considerably high slowdowns up to 5617x. This is in-line
with the scale of the findings from the original FPVM paper[15],
albeit on a much faster machine with vastly different performance
characteristics. The second bar, SEQ, shows the absolute slowdown
of FPVM with only sequence emulation applied, which provides a
moderate reduction in slowdown. Trap short circuiting (SHORT)
shows a much larger overhead reduction, and together they com-
bine to only a net positive benefit. The main takeaway from this
evaluation is that the acceleration techniques can achieve an av-
erage of 7.2x reduction (11.5x in the case of Lorenz) in slowdown
compared to a version of FPVM without them.

One might comment that the overheads of FPVM are still con-
siderable: 37.3x in the best case is still a considerable overhead. An
obvious question to ask, then, is what is the lower-bound overhead
for each application and how close is our accelerated FPVM to

Double
Pend.

Enzo fbench ffbench Lorenz 3-body

Benchmark

0

5

10

15

20

25

Sl
ow

do
wn

 (1
 is

 B
es

t P
os

sib
le

)

 1
0.

70
x

 1
6.

58
x

 1
8.

97
x

 1
5.

27
x

 2
0.

62
x

 1
5.

15
x

 5
.4

8x

 1
4.

05
x

 1
2.

50
x

 3
.0

2x

 2
.4

6x 4
.7

4x

 3
.0

2x 4
.9

3x

 7
.7

0x

 3
.6

8x

 3
.8

7x

 3
.9

2x

 2
.1

3x 3
.5

0x 5
.8

8x

 1
.6

9x

 1
.6

5x

 2
.2

5x

Slowdown from lower bound
NONE
SEQ
SHORT
SEQ SHORT

Figure 5: Slowdown of FPVM relative to the intrinsic slow-
down of the worst-case alternative arithmetic library. 1x
slowdown (red line) is the best possible, meaning there is no
virtualization overhead on top of altmath. Our optimizations
allow FPVM to approach this limit.

achieving is? We consider the lower-bound overhead of floating
point virtualization to simply be the overhead of running the float-
ing point operations through the alternative arithmetic library (i.e.
the intrinsic costs outlined in §2.7). This lower-bound is approxi-
mating the slowdown of an FPVM implementation which has zero
virtualization overhead.

Recall that in this paper we are focusing on a “worst-case” alter-
native arithmetic library, “Boxed IEEE”, which simply NaN-boxes
double precision values in the heap. We consider this to be worst-
case because it is the fastest possible NaN-boxed representation.

To evaluate this, we configured FPVM to record fine-grained
performance and telemetry information to determine the total
time spent executing the alternative arithmetic operations over
the course of application execution. We then add that time to the
baseline without running FPVM from Figure 4 and use that as a new
baseline in Figure 5. As can be seen, with no acceleration (NONE),
FPVM has considerable slowdown on top of the alternative math.
This clearly tracks from Figure 1, where the altmath component
is a tiny contributor to the overall costs. The majority of this non-
intrinsic overhead comes from virtualization overheads: trapping,
dispatching, decoding, and emulation.

Once acceleration techniques are added to reduce these non-
intrinsic costs (SEQ and SHORT), the cost of FPVM shrinks consider-
ably. Lorenz, for example, is just 1.65x slower than if the application
simply used NaN-boxed floating point values with no virtualization
overheads. Some applications have less benefit from these acceler-
ation techniques—notably Enzo does not benefit as greatly from
sequence emulation as other workloads do—but overall the take-
away is that the acceleration techniques outlined have brought us
an order of magnitude closer to eliminating virtualization overheads.

6.2 Amortization Analysis
To answer Q2, we configured FPVM the same way as it was to
gather data for Figure 1, plus additional low cost performance
profiling code, and ran it on our benchmarks. The results can be
seen in Figure 6. As before, NONE has no acceleration, SEQ includes
sequence emulation, SHORT includes trap short-circuiting, and SEQ

HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Nick Wanninger, Nadharm Dhiantravan, and Peter Dinda

0 2000 4000 6000 8000
Amortized CPU Cycles

Double
Pend.

Enzo

fbench

ffbench

Lorenz

3-body

 SEQ SHORT (7.1x)

 SEQ SHORT (7.7x)

 SEQ SHORT (8.5x)

 SEQ SHORT (6.6x)

 SEQ SHORT (12.4x)

 SEQ SHORT (10.2x)

 SHORT (3.2x)

 SHORT (3.6x)

 SHORT (3.8x)

 SHORT (3.3x)

 SHORT (3.7x)

 SHORT (3.6x)

 SEQ (3.4x)

 SEQ (2.9x)

 SEQ (3.2x)

 SEQ (5.1x)

 SEQ (9.7x)

 SEQ (5.2x)

 NONE

 NONE

 NONE

 NONE

 NONE

 NONE

hw
kernel

decache
decode

bind
emul

altmath
gc

fcall
corr

ret

Figure 6: Breakdown of costs with trap short circuiting and
sequence emulation enabled (amortized to the cost per em-
ulated instruction) in FPVM using Boxed IEEE as the alter-
native arithmetic system. Compare with Figure 1. As the
optimizations are applied, altmath becomes an ever larger
component of the overhead, approaching the Amdahl limit.

SHORT includes both. The goal is to make the altmath component
a much larger proportion of the overall overhead, and, ideally, to
dominate it.

Our magic trap and wrap acceleration techniques are always
enabled in these breakdowns. Our new profiling technique for iden-
tifying problem spots (§5.1) results in far fewer required correctness
events to process in our benchmarks and as a result the effect of
magic trap and wrap is much less than would be expected given the
original FPVM paper’s results. Consequently, we decided to remove
magic trap and wrap from this breakdown. It is however important
to understand that an application that requires many correctness
events would see significant benefit from magic trap and wrap.

Answering Q2, trap short-circuiting (SHORT) considerably re-
duces the trap overhead (kern, ret) in all cases. Sequence emulation
(SEQ) amortizes trap overheads (hw, kern, ret) by an amount propor-
tional to the average number of instructions in a sequence. Lorenz,
for example, handles ~32 instructions per trap on average, reducing
the amortized hw+kern+ret overheads by 32x. Enzo benefits less
from this, as its average sequence length is only ~3.

These two techniques are synergistic and by combining the two,
the best of both worlds can be achieved. The shorter the average se-
quence length, the less we benefit from sequence emulation and the
more we benefit from trap short-circuiting. At the happy extreme,
applications with long sequences reduce the already-low trap times
from SHORT to nearly nothing (in Lorenz, down to ~10 cycles per
instruction), and returning from FPVM is practically free.

Most importantly, combining trap short circuiting, sequence
emulation, our new profiling technique, and the trap and wrap
optimizations results in each benchmark/application now spending
a vastly larger portion of its time in altmath, making it the (un-
avoidable) bottleneck in most cases. This lines up with the results

1 addsd xmm12 , xmm5

2 movsd xmm5 , qword ptr [rip + 0x91d]

3 ...

4 movapd xmm0 , xmm8

5 * movhpd xmm11 , qword ptr [rsp + 0x30]

6 * mulsd xmm4 , xmm15

Figure 7: Example instruction trace.

from §6.1—the higher proportion of overheads that altmath is, the
closer the app is to the lower bound in Figure 5.

6.3 Sequence Emulation Analysis
As we described in §4, our sequence emulation system can be

configured to capture detailed statistics on sequences we encounter
during execution, and then dump the resulting profile at the end
of the run. Long, popular sequences result in better amortization
of the trap cost by increasing the average number of emulated
instructions per floating point trap. Does this happen? How big do
we need to make the trace cache? Is it too big to be practical? What
is the performance benefit of the amortization?

Figure 7 gives an example instruction trace, the third most pop-
ular trace in the Lorenz Attractor benchmark. It accounts for about
11% of all encountered traces in the benchmark (of any length). It
is 15 instructions long, though the figure elides some of these for
brevity. The very first instruction (addsd xmm12, xmm5) is the one
that caused the floating point trap that invoked FPVM. The first
asterisked instruction (movhpd xmm11, qword ptr [rsp + 0x30])
is the instruction that terminated the sequence. Here the movhpd
(“move high packed double”) is loading a double from memory
and replacing the high-order double in the xmm11 register with it,
leaving the low-order double unmodified. We felt that adding sup-
port for partial vector moves (on top of normal scalar and vector
moves) was unnecessary engineering effort.7 The hardware will
execute the movhpd without any floating point trap. The very next
instruction (mulsd xmm4, xmm15) is one that we do support, Thus,
if we were to add support for the family of movhpd instructions, we
would not just extend this sequence length by one, but by at least
two (the next instruction is not captured.)

Given all the captured traces and their statistics, and being mind-
ful that the trace lengths depend on our current implementation,
we can ask about the necessary trace cache size. Our decode cache,
which we use to store traces, defaults to 64K instruction entries,
with ≤ 1024 bytes per entry, and thus cannot exceed 64 MB. For
the runs in this paper, it is always much smaller than this, with
less than 2,000 entries for the largest case (Enzo). This should not
be particularly surprising, as one would expect the action to be
concentrated in hot loops.

Of course, it could be that we need to cover many sequences
in order to put a dent into the emulated instructions, which could
be a problem. To assess this, Figure 8 shows the rank popularity
distribution of the traces we have captured, with one curve per
benchmark/application. The more the CDF is skewed to the left, the
better a cache can perform. Clearly, there is a difference between
the benchmarks (left cluster of curves) and the Enzo application

7This family of load instructions also has different semantics depending on whether it
is legacy SSE2 (as here) or VEX+EVEX encoded (multiple overwrites)!

Virtualization So Light, it Floats! Accelerating Floating Point Virtualization HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

0 100 200 300 400 500 600
Sequence Rank

0

20

40

60

80

100

Pe
rc

en
ta

ge

Instruction Rank Popularity

enzo.exe
double_pendulum
fbench
ffbench
lorenz_attractor
three_body_simulation

Figure 8: Instruction sequence rank popularity in terms of
number of emulated instructions.

0 50 100 150 200
Sequence Length

0

20

40

60

80

100

Pe
rc

en
ta

ge

CDF of Instruction Sequence Length

enzo.exe
double_pendulum
fbench
ffbench
lorenz_attractor
three_body_simulation

Figure 9: Instruction sequence length distribution.

(right curve). Fewer than 100 sequences are needed to cover the
benchmarks. Consider Enzo at rank 350. The figure is saying that
caching the 350 most popular sequences in Enzo will result in
covering about 90% of its emulated instructions. There are a little
over 600 total sequences in Enzo, which is still a tiny number.

Ideally, we would like instruction sequences to be as long as
possible, since that maximizes amortization. At the same time, the
longer the sequences are, themore space the trace cachewill require.
Figure 9 shows the length distribution of traces that we captured,
with one curve for each benchmark/application. We would prefer
these curves to skew to the right. As can be seen, the distributions
vary widely, though this is slightly hidden by Lorenz having an
extremely long (albeit unpopular) instruction sequence. It is also
important to note that the distribution will depend a great deal on
compiler optimizations used to compile the program. For example,
loop unrolling and software pipelining optimizations will naturally
lead to longer sequences.

Figure 10 attempts to show the combined effect of sequence rank
popularity and sequence length. The question the figure addresses
is “if we only were able to cache the top-k most popular sequences,
what would the average sequence length be?” So, for example, if
we consider the top-20 sequences in fbench, the average sequence
length is a little over four, while if we consider just the top-5 se-
quences in Lorenz, the average sequence length is already 30. Enzo’s

0 100 200 300 400 500 600
Sequence Rank

0

10

20

30

W
ei

gh
te

d
Se

qu
en

ce
 L

en
gt

h Sequence Length Weighed Rank Popularity
enzo.exe
double_pendulum
fbench
ffbench
lorenz_attractor
three_body_simulation

Figure 10: Instruction sequence length weighted rank popu-
larity. Each trace converges on the average sequence length
encountered in our performance evaluation.

long tail here is simply due to having many more sequences. With
the top-300 sequences, the average sequence length is about 3.

Each trace in the figure converges to the average sequence length
we encountered in our tests, where we did not limit the trace cache.
Note that this tells a story of its own. The lower the average se-
quence length is, the more critical other optimizations are. In Lorenz,
we execute an average of 32 instructions per floating point trap,
while in fbench, we barely manage 4. The rank at which we have
convergence, multiplied by the average instruction length at that
rank also tells us the cache size. So, for example, Lorenz needs
18 × 32 = 576 entries, or about 576 KB of trace cache space. The
worst case, Enzo, is 600 × 3 = 1800 entries or about 1.8 MB.

AnsweringQ3, the longer the average sequence length, the more
we amortize the costs of hw, kern, and ret. Without sequence emu-
lation, this length will be one across the board.

6.4 Performance with MPFR
Thus far, we have evaluated the accelerated version of FPVM on
a “worst case” alternative arithmetic system – Boxed IEEE. This
implementation has the lowest overhead of any system offered by
FPVM, exacerbating the virtualization overhead of FPVM itself.
Figure 11 and 12 show the same workloads as Figure 4 and 5, except
they are run using MPFR instead of Boxed IEEE.

Switching to MPFR is straightforward–FPVM is simply recon-
figured in seconds to use it with 200 bits of precision. Figure 11
shows that overheads are higher than with Boxed IEEE because
math in MPFR is more expensive to perform. On the other hand, the
slowdown under FPVM is much closer to the intrinsic slowdown of
usingMPFR, as shown in Figure 12. As the intrinsic slowdown of the
alternative arithmetic system grows, the slowdown under FPVM
approaches it. Figure 13 shows the amortized cost per instruction
under MPFR. As would be expected, a larger portion of the cost is
due to altmath as MPFR itself is more expensive than Boxed IEEE.
Note that MPFR has slightly higher “gc” overhead particularly in
Enzo. This is due to MPFR allocating more temporary objects than
Boxed. This presents an easy point of optimization in future work.

7 Related Work
Alternative floating point arithmetic systems have gained increas-
ing attention as researchers seek to improve numerical stability,

HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Nick Wanninger, Nadharm Dhiantravan, and Peter Dinda

Double
Pend.

Enzo fbench ffbench Lorenz 3-body

Benchmark

0

1000

2000

3000

4000

Sl
ow

do
wn

 6
12

.8
x

 3
86

0.
7x

 8
40

.8
x

 2
99

8.
4x

 4
52

.3
x

 3
70

.5
x

 3
73

.8
x

 2
97

3.
2x

 5
21

.7
x

 7
79

.0
x

 9
0.

2x

 1
54

.0
x

 2
83

.5
x

 1
60

3.
1x

 4
90

.6
x

 9
33

.0
x

 1
22

.6
x

 1
20

.2
x

 2
53

.3
x

 1
59

2.
2x

 4
38

.0
x

 5
33

.2
x

 7
2.

7x

 8
9.

6x

Application Slowdown - MPFR
NONE
SEQ
SHORT
SEQ SHORT

Figure 11: Switching to MPFR is straightforward, and slow-
down under MPFR benefits from our techniques.

Double
Pend.

Enzo fbench ffbench Lorenz 3-body

Benchmark

0

5

10

15

20

25

Sl
ow

do
wn

 (1
 is

 B
es

t)

 3
.6

7x

 7
.8

3x

 7
.3

7x

 9
.2

3x

 9
.3

6x

 6
.0

7x

 2
.2

8x 6
.1

0x

 4
.9

3x

 2
.7

0x

 1
.6

3x

 2
.7

1x

 1
.8

6x 3
.7

5x

 5
.0

9x

 3
.5

1x

 2
.1

9x

 2
.2

0x

 1
.6

1x 3
.7

8x

 3
.2

7x

 1
.9

4x

 1
.3

5x

 1
.6

6x

Slowdown from lower bound - MPFR
NONE
SEQ
SHORT
SEQ SHORT

Figure 12: FPVM slowdown with MPFR approaches the in-
trinsic slowdown of MPFR itself.

0 2000 4000 6000 8000 10000
Amortized CPU Cycles

Double
Pend.

Enzo

fbench

ffbench

Lorenz

3-body

 SEQ SHORT (3.9x)

 SEQ SHORT (4.5x)

 SEQ SHORT (4.6x)

 SEQ SHORT (6.2x)

 SEQ SHORT (7.8x)

 SEQ SHORT (5.8x)

 SHORT (2.0x)

 SHORT (2.0x)

 SHORT (2.7x)

 SHORT (2.5x)

 SHORT (3.0x)

 SHORT (2.7x)

 SEQ (2.9x)

 SEQ (2.5x)

 SEQ (3.0x)

 SEQ (4.3x)

 SEQ (6.7x)

 SEQ (3.8x)

 NONE

 NONE

 NONE

 NONE

 NONE

 NONE

hw
kernel

decache
decode

bind
emul

altmath
gc

fcall
corr

ret

Figure 13: The amortized cost per instruction is generally
dominated by MPFR (altmath).

precision, and performance in various applications. These efforts
can be categorized into two main directions: the development of
alternative representations which can provide different precisions,
and tools for analyzing and improving floating point accuracy.

Several alternative number representations have been proposed
to address the limitations of IEEE 754 floating point arithmetic.
These include unums and posits [19, 21], BFloats [22], GNU MPFR
[18], libBF [5], and logarithmic arithmetic [3], all of which offer
improved precision, dynamic range, or efficiency in specific work-
loads such as machine learning. Other approaches, including slash
arithmetic [26] and interval arithmetic[20], aim to provide error

bounds and improved numerical stability. However, using such
libraries requires modifying source code, which can be challeng-
ing for large or legacy applications. Some researchers advocate
for a complete rethinking of floating point arithmetic in favor of
an API to the real numbers[8], which would allow programmers
to reason about computations using standard mathematical rules
while achieving practical performance. This approach (or higher
precision) might also mitigate the effects of misunderstandings
developers have about various aspects of floating point [13, 14].

A range of tools aim to improve source code quality by identify-
ing sections with high dependence on precision or compiler/hard-
ware optimizations, which may cause numerical stability issues due
to algorithmic design or buggy optimizations that alter semantics
[4, 6, 7, 11, 12, 17, 23, 24, 27, 28, 30–32]. Many of these tools use
shadow arithmetic with different precision than the original code,
and some operate directly on application binaries, avoiding the
challenges of source-level approaches. While they often reduce per-
formance, their ability to quickly build code coverage mitigates this
concern. Our work on floating point virtualization addresses these
challenges by allowing existing, unmodified binaries to use alter-
native arithmetic systems without recompilation. Unlike existing
approaches that require source code modifications or recompila-
tion, our approach operates at runtime, making it more practical
for large-scale scientific applications. Additionally, we address the
performance bottlenecks inherent in traditional floating point virtu-
alization, significantly reducing its overhead and making it a viable
alternative for real-world workloads.

8 Conclusions and Future Work
Floating point virtualization has the ability to enable the use of alter-
native arithmetic systems without requiring source code changes.
However, its practicality has been limited by high overheads in the
traditional trap-and-emulate model, where trap delivery mecha-
nisms introduce significant virtualization overheads. In this work,
we introduced trap short-circuiting, instruction sequence emula-
tion, and kernel-bypass for correctness instrumentation—three tech-
niques that dramatically reduce the cost of virtualization. Our im-
plementation within FPVM on x64/Linux achieves a 10x reduction
in per-instruction overhead, bringing virtualization performance
within 1.65x of the lower bound set by the worst case alternative
arithmetic system for FPVM. With a more realistic MPFR system,
FPVM can achieve 1.35x of the lower bound.

We are currently working towards architecture-independence,
with immediate additional support for ARM. Conceivably, FPVM
could operate on any environment that can provide floating point
traps, including some GPUs such as AMD. We are also extending
the RISC-V architecture in several ways to better support floating
point virtualization, including adding very fast floating point trap
support, and hardware support to replace correctness traps.

Acknowledgments
We thank the anonymous reviewers for their time and feedback.
We also thank members of the Prescience Lab for their support and
feedback on this work. This effort is based upon work supported
by the U.S. National Science Foundation (NSF) under awards CNS-
2211315, CCF-2119069, and CNS-2211508.

Virtualization So Light, it Floats! Accelerating Floating Point Virtualization HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

References
[1] 2021. Capstone: The Ultimate Disassembler. Retrieved Jan 19, 2019 from https:

//www.capstone-engine.org/
[2] 2025. LIEF - Library to Instrument Executable Formats. https://github.com/lief-

project/LIEF/.
[3] M. G. Arnold, T. A. Bailey, J. R. Cowles, and J. J. Cupal. 1990. Redundant Loga-

rithmic Arithmetic. IEEE Trans. Comput. 39, 8 (Aug. 1990), 1077–1086.
[4] Tao Bao and Xiangyu Zhang. 2013. On-the-fly Detection of Instability Problems

in Floating-point Program Execution. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA).

[5] Fabrice Bellard. 2017. LibBF: The Tiny Big Float Library. Available at https:
//bellard.org/libbf/.

[6] Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, Dong H. Ahn, Ignacio
Laguna, Gregory L. Lee, and Holger E. Jones. 2019. Multi-level Analysis of
Compiler-Induced Variability and Performance Tradeoffs. In Proceedings of the
28th ACM Symposium on High-performance Parallel and Distributed Computing
(HPDC 2019).

[7] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A Dynamic Pro-
gram Analysis to Find Floating-point Accuracy Problems. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI).

[8] Hans-J. Boehm. 2020. Towards an API for the Real Numbers. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

[9] Greg L. Bryan, Michael L. Norman, Brian W. O’Shea, Tom Abel, John H. Wise,
Matthew J. Turk, Daniel R. Reynolds, David C. Collins, Peng Wang, Samuel W.
Skillman, Britton Smith, Robert P. Harkness, James Bordner, Ji hoon Kim, Michael
Kuhlen, Hao Xu, Nathan Goldbaum, Cameron Hummels, Alexei G. Kritsuk, Eliza-
beth Tasker, Stephen Skory, Christine M. Simpson, Oliver Hahn, Jeffrey S. Oishi,
Geoffrey C. So, Fen Zhao, Renyue Cen, Yuan Li, and The Enzo Collaboration. 2014.
ENZO: An Adaptive Mesh Refinement Code for Astrophysics. The Astrophysical
Journal Supplement Series 211, 2 (2014), 19.

[10] Annie Cherkaev. 2018. The Secret Life of a NaN. https://anniecherkaev.com/the-
secret-life-of-nan.

[11] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous Floating-point Mixed-
precision Tuning. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL). 300–315.

[12] Clement Courbet. 2021. NSan: A Floating-Point Numerical Sanitizer. In Proceed-
ings of the 30th ACM SIGPLAN International Conference on Compiler Construction
(CC).

[13] Peter Dinda and Alex Bernat. 2021. Comparing the Understanding of IEEE Floating
Point Between Scientific and Non-scientific Users. Technical Report NWU-CS-2021-
07. Department of Computer Science, Northwestern University.

[14] Peter Dinda and Conor Hetland. 2018. Do Developers Understand IEEE Floating
Point?. In Proceedings of the 32rd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2018).

[15] Peter Dinda, NickWanninger, JiachengMa, Alex Bernat, Charles Bernat, Souradip
Ghosh, Christopher Kraemer, and Yehya Elmasry. 2022. FPVM: Towards a Floating
Point Virtual Machine. In Proceedings of the 31st International Symposium on
High-Performance Parallel and Distributed Computing (Minneapolis, MN, USA)
(HPDC ’22). Association for Computing Machinery, New York, NY, USA, 16–29.
https://doi.org/10.1145/3502181.3531469

[16] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary Rewrit-
ing without Control Flow Recovery. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 151–163.
https://doi.org/10.1145/3385412.3385972

[17] François Févotte and Bruno Lathuilière. 2016. VERROU: Assessing Floating Point
Accuracy Without Recompiling. working paper or preprint.

[18] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. 2007. MPFR: A Multiple-precision Binary Floating-point Library
with Correct Rounding. ACM Transactions on Mathematical Software (TOMS) 33,
2 (June 2007).

[19] John Gustafson. 2015. The End of Error: Unum Computing. Chapman and Hal-
l/CRC.

[20] T. Hickey, Q. Ju, and M. H. Van Emden. 2001. Interval Arithmetic: From Principles
to Implementation. J. ACM 48, 5 (Sept. 2001), 1038–1068.

[21] Willian Kahan. 2016. A Critique of John L. Gustafson’s The End of Error—Unum
Computation and his A Radical Approach to Computation with Real Numbers.
In Proceedings of the 23rd IEEE Symposium on Computer Arithmetic (ARITH).

[22] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal
Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka,
Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo Park, Alexander Heinecke,
Evangelos Georganas, Sudarshan Srinivasan, Abhisek Kundu, Misha Smelyanskiy,
Bharat Kaul, and Pradeep DubeyAbhisek Kundu. 2019. A Study of BFLOAT16 for

Deep Learning Training. arXiv preprint arXiv:1905.12322.
[23] Michael O. Lam, Jeffrey K. Hollingsworth, and G.W. Stewart. 2013. Dynamic

floating-point cancellation detection. Parallel Comput. 39, 3 (2013), 146–155.
[24] Wen-Chuan Lee, Tao Bao, Yunhui Zheng, Xiangyu Zhang, Keval Vora, and Rajiv

Gupta. 2015. RAIVE: Runtime Assessment of Floating-point Instability by Vec-
torization. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. SIG-
PLAN Not. 40, 6 (June 2005), 190–200. https://doi.org/10.1145/1064978.1065034

[26] D. W. Matula and P. Kornerup. 1985. Finite Precision Rational Arithmetic: Slash
Number Systems. IEEE Trans. Comput. C-34, 1 (Jan 1985), 3–18.

[27] Daniel J. Milroy, Allison H. Baker, Dorit M. Hammerling, John M. Dennis, Sheri A.
Mickelson, and Elizabeth R. Jessup. 2016. Towards Characterizing the Variability
of Statistically Consistent Community Earth System Model Simulations. Procedia
Computer Science 80, C (June 2016), 1589–1600.

[28] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock.
2015. Automatically Improving Accuracy for Floating Point Expressions. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

[29] Eric Rotenberg, Steve Bennett, and James E. Smith. 1996. Trace Cache: A Low
Latency Approach to High Bandwidth Instruction Fetching. In Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO
1996). 24–35.

[30] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H Bailey, Costin Iancu, and David Hough.
2013. Precimonious: Tuning assistant for floating-point precision. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis (Supercomputing).

[31] Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock. 2018.
Finding Root Causes of Floating Point Error. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).

[32] G. Sawaya, M. Bentley, I. Briggs, G. Gopalakrishnan, and D. H. Ahn. 2017. FLiT:
Cross-platform floating-point result-consistency tester and workload. In Pro-
ceedings of the 2017 IEEE International Symposium on Workload Characterization
(IISWC). 229–238.

[33] John Walker. 2021. FBench: Floating Point Benchmarks. https://www.fourmilab.
ch/fbench/.

[34] John Walker. 2025. FFBench: Fast Fourier Transform Benchmark. https://www.
fourmilab.ch/fbench/ffbench.html.

[35] A. Wingo. 2011. Value Representation in JavaScript Implementations.
http://wingolog.org/archives/2011/05/18/value-representation-in-javascript-
implementations.

https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://github.com/lief-project/LIEF/
https://github.com/lief-project/LIEF/
https://bellard.org/libbf/
https://bellard.org/libbf/
https://anniecherkaev.com/the-secret-life-of-nan
https://anniecherkaev.com/the-secret-life-of-nan
https://doi.org/10.1145/3502181.3531469
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/1064978.1065034
https://www.fourmilab.ch/fbench/
https://www.fourmilab.ch/fbench/
https://www.fourmilab.ch/fbench/ffbench.html
https://www.fourmilab.ch/fbench/ffbench.html
http://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations
http://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations

	Abstract
	1 Introduction
	2 Floating point virtualization
	2.1 User-level virtualization
	2.2 NaN-boxing
	2.3 Floating point traps
	2.4 Instruction Decoding and Emulation
	2.5 Garbage collection
	2.6 Correctness instrumentation
	2.7 Breaking Down the Costs of Virtualization

	3 Trap short-circuiting
	3.1 Design and implementation

	4 Instruction Sequence Emulation
	4.1 Tradeoffs
	4.2 Implementation

	5 Kernel-bypass for correctness instrumentation
	5.1 Profiling Instead of Static Analysis
	5.2 Magic traps for Memory-Escape Correctness
	5.3 Magic wraps for Foreign Function Correctness

	6 Evaluation
	6.1 Our Acceleration Techniques Reduce the Overhead of Virtualization Considerably
	6.2 Amortization Analysis
	6.3 Sequence Emulation Analysis
	6.4 Performance with MPFR

	7 Related Work
	8 Conclusions and Future Work
	References

